关于有限域上的 2 超可减多项式

J.W. Bober, L. Du, D. Fretwell, G.S. Kopp, T.D. Wooley
{"title":"关于有限域上的 2 超可减多项式","authors":"J.W. Bober, L. Du, D. Fretwell, G.S. Kopp, T.D. Wooley","doi":"10.1016/j.indag.2024.08.005","DOIUrl":null,"url":null,"abstract":"We investigate -superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most . Let be a finite field of characteristic . We show that no 2-superirreducible polynomials exist in when and that no such polynomials of odd degree exist when is odd. We address the remaining case in which is odd and the polynomials have even degree by giving an explicit formula for the number of monic 2-superirreducible polynomials having even degree . This formula is analogous to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or the size of the finite field tends to infinity.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On 2-superirreducible polynomials over finite fields\",\"authors\":\"J.W. Bober, L. Du, D. Fretwell, G.S. Kopp, T.D. Wooley\",\"doi\":\"10.1016/j.indag.2024.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate -superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most . Let be a finite field of characteristic . We show that no 2-superirreducible polynomials exist in when and that no such polynomials of odd degree exist when is odd. We address the remaining case in which is odd and the polynomials have even degree by giving an explicit formula for the number of monic 2-superirreducible polynomials having even degree . This formula is analogous to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or the size of the finite field tends to infinity.\",\"PeriodicalId\":501252,\"journal\":{\"name\":\"Indagationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.indag.2024.08.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.08.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究-超可逆多项式,即在任何正阶数至多为.的多项式置换下仍然不可逆转的不可逆转多项式。设有限域的特征为 .我们证明,当 是奇数时,不存在 2 次超可重复性多项式;当 是奇数时,不存在奇数度的此类多项式。我们针对余下的情况,即奇数且多项式具有偶数阶,给出了具有偶数阶的单项式 2-superirreducible 多项式的明确公式.这个公式类似于高斯给出的有限域上给定阶数的一元不可还原多项式的个数公式。我们将讨论当多项式的度数或有限域的大小趋于无穷大时的相关渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On 2-superirreducible polynomials over finite fields
We investigate -superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most . Let be a finite field of characteristic . We show that no 2-superirreducible polynomials exist in when and that no such polynomials of odd degree exist when is odd. We address the remaining case in which is odd and the polynomials have even degree by giving an explicit formula for the number of monic 2-superirreducible polynomials having even degree . This formula is analogous to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or the size of the finite field tends to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信