Click2Mask:本地编辑与动态蒙版生成

Omer Regev, Omri Avrahami, Dani Lischinski
{"title":"Click2Mask:本地编辑与动态蒙版生成","authors":"Omer Regev, Omri Avrahami, Dani Lischinski","doi":"arxiv-2409.08272","DOIUrl":null,"url":null,"abstract":"Recent advancements in generative models have revolutionized image generation\nand editing, making these tasks accessible to non-experts. This paper focuses\non local image editing, particularly the task of adding new content to a\nloosely specified area. Existing methods often require a precise mask or a\ndetailed description of the location, which can be cumbersome and prone to\nerrors. We propose Click2Mask, a novel approach that simplifies the local\nediting process by requiring only a single point of reference (in addition to\nthe content description). A mask is dynamically grown around this point during\na Blended Latent Diffusion (BLD) process, guided by a masked CLIP-based\nsemantic loss. Click2Mask surpasses the limitations of segmentation-based and\nfine-tuning dependent methods, offering a more user-friendly and contextually\naccurate solution. Our experiments demonstrate that Click2Mask not only\nminimizes user effort but also delivers competitive or superior local image\nmanipulation results compared to SoTA methods, according to both human\njudgement and automatic metrics. Key contributions include the simplification\nof user input, the ability to freely add objects unconstrained by existing\nsegments, and the integration potential of our dynamic mask approach within\nother editing methods.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Click2Mask: Local Editing with Dynamic Mask Generation\",\"authors\":\"Omer Regev, Omri Avrahami, Dani Lischinski\",\"doi\":\"arxiv-2409.08272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in generative models have revolutionized image generation\\nand editing, making these tasks accessible to non-experts. This paper focuses\\non local image editing, particularly the task of adding new content to a\\nloosely specified area. Existing methods often require a precise mask or a\\ndetailed description of the location, which can be cumbersome and prone to\\nerrors. We propose Click2Mask, a novel approach that simplifies the local\\nediting process by requiring only a single point of reference (in addition to\\nthe content description). A mask is dynamically grown around this point during\\na Blended Latent Diffusion (BLD) process, guided by a masked CLIP-based\\nsemantic loss. Click2Mask surpasses the limitations of segmentation-based and\\nfine-tuning dependent methods, offering a more user-friendly and contextually\\naccurate solution. Our experiments demonstrate that Click2Mask not only\\nminimizes user effort but also delivers competitive or superior local image\\nmanipulation results compared to SoTA methods, according to both human\\njudgement and automatic metrics. Key contributions include the simplification\\nof user input, the ability to freely add objects unconstrained by existing\\nsegments, and the integration potential of our dynamic mask approach within\\nother editing methods.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成模型的最新进展彻底改变了图像的生成和编辑,使非专业人员也能完成这些任务。本文的重点是局部图像编辑,尤其是在随意指定的区域添加新内容的任务。现有的方法通常需要精确的遮罩或对位置的详细描述,既麻烦又容易出错。我们提出的 Click2Mask 是一种新颖的方法,它只需要一个参考点(除内容描述外),从而简化了本地编辑过程。在混合潜在扩散(BLD)过程中,在基于掩码 CLIP 语义损失的指导下,围绕该点动态生成掩码。Click2Mask 超越了基于分割的方法和依赖于微调的方法的局限性,提供了一种更加用户友好和上下文准确的解决方案。我们的实验证明,与 SoTA 方法相比,Click2Mask 不仅最大限度地减少了用户的工作量,而且根据人工判断和自动指标,它还能提供具有竞争力或更优越的局部图像处理结果。我们的主要贡献包括简化了用户输入,能够不受现有片段的限制自由添加对象,以及我们的动态遮罩方法在其他编辑方法中的整合潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Click2Mask: Local Editing with Dynamic Mask Generation
Recent advancements in generative models have revolutionized image generation and editing, making these tasks accessible to non-experts. This paper focuses on local image editing, particularly the task of adding new content to a loosely specified area. Existing methods often require a precise mask or a detailed description of the location, which can be cumbersome and prone to errors. We propose Click2Mask, a novel approach that simplifies the local editing process by requiring only a single point of reference (in addition to the content description). A mask is dynamically grown around this point during a Blended Latent Diffusion (BLD) process, guided by a masked CLIP-based semantic loss. Click2Mask surpasses the limitations of segmentation-based and fine-tuning dependent methods, offering a more user-friendly and contextually accurate solution. Our experiments demonstrate that Click2Mask not only minimizes user effort but also delivers competitive or superior local image manipulation results compared to SoTA methods, according to both human judgement and automatic metrics. Key contributions include the simplification of user input, the ability to freely add objects unconstrained by existing segments, and the integration potential of our dynamic mask approach within other editing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信