Jiani Cao;Jiesong Chen;Chengdong Lin;Yang Liu;Kun Wang;Zhenjiang Li
{"title":"用手机在任何表面上进行实用的目光跟踪","authors":"Jiani Cao;Jiesong Chen;Chengdong Lin;Yang Liu;Kun Wang;Zhenjiang Li","doi":"10.1109/TMC.2024.3445373","DOIUrl":null,"url":null,"abstract":"This paper introduces ASGaze, a novel gaze tracking system using the RGB camera of smartphones. ASGaze improves the accuracy of existing methods and uniquely tracks gaze points on various surfaces, including phone screens, computer displays, and non-electronic surfaces like whiteboards or paper - a situation that is challenging for existing methods. To achieve this, we revisit the 3D geometric eye model, commonly used in high-end commercial trackers, and it has the potential to achieve our goals. To avoid the high cost of commercial solutions, we identify three fundamental issues when processing the eye model with an RGB camera, including how to accurately extract iris boundary that is the meta-information in our design, how to remove ambiguity from iris boundary to gaze point transformation, and how to map gaze points onto the target surface. Furthermore, as we consider deploying ASGaze in real-world applications, two additional challenges should be addressed: how to automatically and accurately annotate the training dataset to reduce manual labor and time costs, and how to accelerate the inference speed of ASGaze on mobile devices to improve user experience. We propose effective techniques to resolve these issues. Our prototype and experiments on three tracking surfaces demonstrate significant performance gains.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"23 12","pages":"14689-14707"},"PeriodicalIF":7.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Gaze Tracking on Any Surface With Your Phone\",\"authors\":\"Jiani Cao;Jiesong Chen;Chengdong Lin;Yang Liu;Kun Wang;Zhenjiang Li\",\"doi\":\"10.1109/TMC.2024.3445373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces ASGaze, a novel gaze tracking system using the RGB camera of smartphones. ASGaze improves the accuracy of existing methods and uniquely tracks gaze points on various surfaces, including phone screens, computer displays, and non-electronic surfaces like whiteboards or paper - a situation that is challenging for existing methods. To achieve this, we revisit the 3D geometric eye model, commonly used in high-end commercial trackers, and it has the potential to achieve our goals. To avoid the high cost of commercial solutions, we identify three fundamental issues when processing the eye model with an RGB camera, including how to accurately extract iris boundary that is the meta-information in our design, how to remove ambiguity from iris boundary to gaze point transformation, and how to map gaze points onto the target surface. Furthermore, as we consider deploying ASGaze in real-world applications, two additional challenges should be addressed: how to automatically and accurately annotate the training dataset to reduce manual labor and time costs, and how to accelerate the inference speed of ASGaze on mobile devices to improve user experience. We propose effective techniques to resolve these issues. Our prototype and experiments on three tracking surfaces demonstrate significant performance gains.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"23 12\",\"pages\":\"14689-14707\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10638728/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638728/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Practical Gaze Tracking on Any Surface With Your Phone
This paper introduces ASGaze, a novel gaze tracking system using the RGB camera of smartphones. ASGaze improves the accuracy of existing methods and uniquely tracks gaze points on various surfaces, including phone screens, computer displays, and non-electronic surfaces like whiteboards or paper - a situation that is challenging for existing methods. To achieve this, we revisit the 3D geometric eye model, commonly used in high-end commercial trackers, and it has the potential to achieve our goals. To avoid the high cost of commercial solutions, we identify three fundamental issues when processing the eye model with an RGB camera, including how to accurately extract iris boundary that is the meta-information in our design, how to remove ambiguity from iris boundary to gaze point transformation, and how to map gaze points onto the target surface. Furthermore, as we consider deploying ASGaze in real-world applications, two additional challenges should be addressed: how to automatically and accurately annotate the training dataset to reduce manual labor and time costs, and how to accelerate the inference speed of ASGaze on mobile devices to improve user experience. We propose effective techniques to resolve these issues. Our prototype and experiments on three tracking surfaces demonstrate significant performance gains.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.