FedHide:通过隐藏在邻居中进行联合学习

Hyunsin Park, Sungrack Yun
{"title":"FedHide:通过隐藏在邻居中进行联合学习","authors":"Hyunsin Park, Sungrack Yun","doi":"arxiv-2409.07808","DOIUrl":null,"url":null,"abstract":"We propose a prototype-based federated learning method designed for embedding\nnetworks in classification or verification tasks. Our focus is on scenarios\nwhere each client has data from a single class. The main challenge is to\ndevelop an embedding network that can distinguish between different classes\nwhile adhering to privacy constraints. Sharing true class prototypes with the\nserver or other clients could potentially compromise sensitive information. To\ntackle this issue, we propose a proxy class prototype that will be shared among\nclients instead of the true class prototype. Our approach generates proxy class\nprototypes by linearly combining them with their nearest neighbors. This\ntechnique conceals the true class prototype while enabling clients to learn\ndiscriminative embedding networks. We compare our method to alternative\ntechniques, such as adding random Gaussian noise and using random selection\nwith cosine similarity constraints. Furthermore, we evaluate the robustness of\nour approach against gradient inversion attacks and introduce a measure for\nprototype leakage. This measure quantifies the extent of private information\nrevealed when sharing the proposed proxy class prototype. Moreover, we provide\na theoretical analysis of the convergence properties of our approach. Our\nproposed method for federated learning from scratch demonstrates its\neffectiveness through empirical results on three benchmark datasets: CIFAR-100,\nVoxCeleb1, and VGGFace2.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FedHide: Federated Learning by Hiding in the Neighbors\",\"authors\":\"Hyunsin Park, Sungrack Yun\",\"doi\":\"arxiv-2409.07808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a prototype-based federated learning method designed for embedding\\nnetworks in classification or verification tasks. Our focus is on scenarios\\nwhere each client has data from a single class. The main challenge is to\\ndevelop an embedding network that can distinguish between different classes\\nwhile adhering to privacy constraints. Sharing true class prototypes with the\\nserver or other clients could potentially compromise sensitive information. To\\ntackle this issue, we propose a proxy class prototype that will be shared among\\nclients instead of the true class prototype. Our approach generates proxy class\\nprototypes by linearly combining them with their nearest neighbors. This\\ntechnique conceals the true class prototype while enabling clients to learn\\ndiscriminative embedding networks. We compare our method to alternative\\ntechniques, such as adding random Gaussian noise and using random selection\\nwith cosine similarity constraints. Furthermore, we evaluate the robustness of\\nour approach against gradient inversion attacks and introduce a measure for\\nprototype leakage. This measure quantifies the extent of private information\\nrevealed when sharing the proposed proxy class prototype. Moreover, we provide\\na theoretical analysis of the convergence properties of our approach. Our\\nproposed method for federated learning from scratch demonstrates its\\neffectiveness through empirical results on three benchmark datasets: CIFAR-100,\\nVoxCeleb1, and VGGFace2.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于原型的联合学习方法,设计用于在分类或验证任务中嵌入网络。我们的重点是每个客户端都拥有来自单一类别的数据的场景。我们面临的主要挑战是如何开发一种嵌入网络,既能区分不同类别,又能遵守隐私约束。与服务器或其他客户端共享真正的类原型可能会泄露敏感信息。为了解决这个问题,我们提出了一种代理类原型,它将在客户端之间共享,而不是真正的类原型。我们的方法通过将代理类原型与其最近的邻居进行线性组合来生成代理类原型。这种方法既能隐藏真正的类原型,又能让客户学习到有区分度的嵌入网络。我们将我们的方法与其他技术进行了比较,如添加随机高斯噪声和使用带有余弦相似性约束的随机选择。此外,我们还评估了我们的方法对梯度反转攻击的鲁棒性,并引入了一种原型泄漏度量方法。该指标量化了共享所提出的代理类原型时泄露的私人信息的程度。此外,我们还对我们方法的收敛特性进行了理论分析。我们提出的从零开始的联合学习方法通过在三个基准数据集上的实证结果证明了它的有效性:CIFAR-100、VoxCeleb1 和 VGGFace2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FedHide: Federated Learning by Hiding in the Neighbors
We propose a prototype-based federated learning method designed for embedding networks in classification or verification tasks. Our focus is on scenarios where each client has data from a single class. The main challenge is to develop an embedding network that can distinguish between different classes while adhering to privacy constraints. Sharing true class prototypes with the server or other clients could potentially compromise sensitive information. To tackle this issue, we propose a proxy class prototype that will be shared among clients instead of the true class prototype. Our approach generates proxy class prototypes by linearly combining them with their nearest neighbors. This technique conceals the true class prototype while enabling clients to learn discriminative embedding networks. We compare our method to alternative techniques, such as adding random Gaussian noise and using random selection with cosine similarity constraints. Furthermore, we evaluate the robustness of our approach against gradient inversion attacks and introduce a measure for prototype leakage. This measure quantifies the extent of private information revealed when sharing the proposed proxy class prototype. Moreover, we provide a theoretical analysis of the convergence properties of our approach. Our proposed method for federated learning from scratch demonstrates its effectiveness through empirical results on three benchmark datasets: CIFAR-100, VoxCeleb1, and VGGFace2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信