Anna Emilie J. Wedenborg, Michael Alexander Harborg, Andreas Bigom, Oliver Elmgreen, Marcus Presutti, Andreas Råskov, Fumiko Kano Glückstad, Mikkel Schmidt, Morten Mørup
{"title":"通过正序原型分析建立人类反应模型","authors":"Anna Emilie J. Wedenborg, Michael Alexander Harborg, Andreas Bigom, Oliver Elmgreen, Marcus Presutti, Andreas Råskov, Fumiko Kano Glückstad, Mikkel Schmidt, Morten Mørup","doi":"arxiv-2409.07934","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel framework for Archetypal Analysis (AA) tailored\nto ordinal data, particularly from questionnaires. Unlike existing methods, the\nproposed method, Ordinal Archetypal Analysis (OAA), bypasses the two-step\nprocess of transforming ordinal data into continuous scales and operates\ndirectly on the ordinal data. We extend traditional AA methods to handle the\nsubjective nature of questionnaire-based data, acknowledging individual\ndifferences in scale perception. We introduce the Response Bias Ordinal\nArchetypal Analysis (RBOAA), which learns individualized scales for each\nsubject during optimization. The effectiveness of these methods is demonstrated\non synthetic data and the European Social Survey dataset, highlighting their\npotential to provide deeper insights into human behavior and perception. The\nstudy underscores the importance of considering response bias in cross-national\nresearch and offers a principled approach to analyzing ordinal data through\nArchetypal Analysis.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Human Responses by Ordinal Archetypal Analysis\",\"authors\":\"Anna Emilie J. Wedenborg, Michael Alexander Harborg, Andreas Bigom, Oliver Elmgreen, Marcus Presutti, Andreas Råskov, Fumiko Kano Glückstad, Mikkel Schmidt, Morten Mørup\",\"doi\":\"arxiv-2409.07934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel framework for Archetypal Analysis (AA) tailored\\nto ordinal data, particularly from questionnaires. Unlike existing methods, the\\nproposed method, Ordinal Archetypal Analysis (OAA), bypasses the two-step\\nprocess of transforming ordinal data into continuous scales and operates\\ndirectly on the ordinal data. We extend traditional AA methods to handle the\\nsubjective nature of questionnaire-based data, acknowledging individual\\ndifferences in scale perception. We introduce the Response Bias Ordinal\\nArchetypal Analysis (RBOAA), which learns individualized scales for each\\nsubject during optimization. The effectiveness of these methods is demonstrated\\non synthetic data and the European Social Survey dataset, highlighting their\\npotential to provide deeper insights into human behavior and perception. The\\nstudy underscores the importance of considering response bias in cross-national\\nresearch and offers a principled approach to analyzing ordinal data through\\nArchetypal Analysis.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种新颖的原型分析(AA)框架,专门针对序数数据,尤其是来自问卷调查的数据。与现有方法不同,本文提出的方法--序数原型分析(OAA)--绕过了将序数数据转换为连续量表的两步过程,直接对序数数据进行操作。我们扩展了传统的 AA 方法,以处理基于问卷的数据的主观性,承认量表感知的个体差异。我们引入了响应偏差序数弧形分析法(RBOAA),它能在优化过程中为每个受试者学习个性化的量表。我们在合成数据和欧洲社会调查数据集上证明了这些方法的有效性,从而凸显了它们在深入了解人类行为和感知方面的潜力。该研究强调了在跨国研究中考虑反应偏差的重要性,并提供了一种通过原型分析法分析序数数据的原则性方法。
Modeling Human Responses by Ordinal Archetypal Analysis
This paper introduces a novel framework for Archetypal Analysis (AA) tailored
to ordinal data, particularly from questionnaires. Unlike existing methods, the
proposed method, Ordinal Archetypal Analysis (OAA), bypasses the two-step
process of transforming ordinal data into continuous scales and operates
directly on the ordinal data. We extend traditional AA methods to handle the
subjective nature of questionnaire-based data, acknowledging individual
differences in scale perception. We introduce the Response Bias Ordinal
Archetypal Analysis (RBOAA), which learns individualized scales for each
subject during optimization. The effectiveness of these methods is demonstrated
on synthetic data and the European Social Survey dataset, highlighting their
potential to provide deeper insights into human behavior and perception. The
study underscores the importance of considering response bias in cross-national
research and offers a principled approach to analyzing ordinal data through
Archetypal Analysis.