张量因式分解与电路之间的关系是什么(以及如何利用它)?

Lorenzo Loconte, Antonio Mari, Gennaro Gala, Robert Peharz, Cassio de Campos, Erik Quaeghebeur, Gennaro Vessio, Antonio Vergari
{"title":"张量因式分解与电路之间的关系是什么(以及如何利用它)?","authors":"Lorenzo Loconte, Antonio Mari, Gennaro Gala, Robert Peharz, Cassio de Campos, Erik Quaeghebeur, Gennaro Vessio, Antonio Vergari","doi":"arxiv-2409.07953","DOIUrl":null,"url":null,"abstract":"This paper establishes a rigorous connection between circuit representations\nand tensor factorizations, two seemingly distinct yet fundamentally related\nareas. By connecting these fields, we highlight a series of opportunities that\ncan benefit both communities. Our work generalizes popular tensor\nfactorizations within the circuit language, and unifies various circuit\nlearning algorithms under a single, generalized hierarchical factorization\nframework. Specifically, we introduce a modular \"Lego block\" approach to build\ntensorized circuit architectures. This, in turn, allows us to systematically\nconstruct and explore various circuit and tensor factorization models while\nmaintaining tractability. This connection not only clarifies similarities and\ndifferences in existing models, but also enables the development of a\ncomprehensive pipeline for building and optimizing new circuit/tensor\nfactorization architectures. We show the effectiveness of our framework through\nextensive empirical evaluations, and highlight new research opportunities for\ntensor factorizations in probabilistic modeling.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?\",\"authors\":\"Lorenzo Loconte, Antonio Mari, Gennaro Gala, Robert Peharz, Cassio de Campos, Erik Quaeghebeur, Gennaro Vessio, Antonio Vergari\",\"doi\":\"arxiv-2409.07953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes a rigorous connection between circuit representations\\nand tensor factorizations, two seemingly distinct yet fundamentally related\\nareas. By connecting these fields, we highlight a series of opportunities that\\ncan benefit both communities. Our work generalizes popular tensor\\nfactorizations within the circuit language, and unifies various circuit\\nlearning algorithms under a single, generalized hierarchical factorization\\nframework. Specifically, we introduce a modular \\\"Lego block\\\" approach to build\\ntensorized circuit architectures. This, in turn, allows us to systematically\\nconstruct and explore various circuit and tensor factorization models while\\nmaintaining tractability. This connection not only clarifies similarities and\\ndifferences in existing models, but also enables the development of a\\ncomprehensive pipeline for building and optimizing new circuit/tensor\\nfactorization architectures. We show the effectiveness of our framework through\\nextensive empirical evaluations, and highlight new research opportunities for\\ntensor factorizations in probabilistic modeling.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在电路表示法和张量因式分解这两个看似不同却又有本质关联的领域之间建立了严格的联系。通过连接这两个领域,我们强调了一系列能使这两个领域受益的机会。我们的工作将流行的张量因式分解推广到电路语言中,并将各种电路学习算法统一到一个单一、通用的分层因式分解框架下。具体来说,我们引入了一种模块化的 "乐高积木 "方法来构建张量电路架构。这反过来又使我们能够系统地构建和探索各种电路和张量因式分解模型,同时保持其可操作性。这种联系不仅阐明了现有模型的异同,还使我们能够开发出用于构建和优化新电路/张量因子化架构的综合流水线。我们通过广泛的实证评估展示了我们框架的有效性,并强调了在概率建模中进行张量因子化的新研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?
This paper establishes a rigorous connection between circuit representations and tensor factorizations, two seemingly distinct yet fundamentally related areas. By connecting these fields, we highlight a series of opportunities that can benefit both communities. Our work generalizes popular tensor factorizations within the circuit language, and unifies various circuit learning algorithms under a single, generalized hierarchical factorization framework. Specifically, we introduce a modular "Lego block" approach to build tensorized circuit architectures. This, in turn, allows us to systematically construct and explore various circuit and tensor factorization models while maintaining tractability. This connection not only clarifies similarities and differences in existing models, but also enables the development of a comprehensive pipeline for building and optimizing new circuit/tensor factorization architectures. We show the effectiveness of our framework through extensive empirical evaluations, and highlight new research opportunities for tensor factorizations in probabilistic modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信