复杂行星齿轮箱振动信号传输和衰减分析的新方法

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
ChaoHu Wei, HongRui Cao, JiangHai Shi, Yang Yang, MingGang Du
{"title":"复杂行星齿轮箱振动信号传输和衰减分析的新方法","authors":"ChaoHu Wei, HongRui Cao, JiangHai Shi, Yang Yang, MingGang Du","doi":"10.1007/s11431-024-2731-3","DOIUrl":null,"url":null,"abstract":"<p>Planetary gearboxes play a crucial role in altering rotary speed and transmitting power in large machines like wind turbines and sophisticated vehicles. There are many nonlinear interfaces, such as splines, bearings, and gear pairs, in planetary gearboxes, and the resulting vibration signal transmission and attenuation mechanisms are still unknown. In this study, a novel method for quantitatively analyzing the transmission and attenuation of vibration signals is proposed. A multibody dynamic model of the planetary gearbox considering nonlinear gear meshing is presented and experimentally validated. To avoid the interference of foundation vibration on the transmission of the fault signal, the fault impact factor (FIF) is used to describe the intensity of the failure, which aligns well with the experimental signals. Based on the FIF, the vibration signal attenuation of nonlinear interfaces such as splines, bearings, and gear meshing interfaces is quantitatively evaluated. To clarify the transfer paths of fault vibration signals inside the gearbox, the transfer path area method (TPAM) based on FIF is proposed. According to the simulated results, the primary transfer paths of fault vibration signals within the gearbox have been identified, which is of great help in understanding the transmission and attenuation of vibration signals in planetary gearboxes.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":"48 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for vibration signal transmission and attenuation analysis in complex planetary gearboxes\",\"authors\":\"ChaoHu Wei, HongRui Cao, JiangHai Shi, Yang Yang, MingGang Du\",\"doi\":\"10.1007/s11431-024-2731-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Planetary gearboxes play a crucial role in altering rotary speed and transmitting power in large machines like wind turbines and sophisticated vehicles. There are many nonlinear interfaces, such as splines, bearings, and gear pairs, in planetary gearboxes, and the resulting vibration signal transmission and attenuation mechanisms are still unknown. In this study, a novel method for quantitatively analyzing the transmission and attenuation of vibration signals is proposed. A multibody dynamic model of the planetary gearbox considering nonlinear gear meshing is presented and experimentally validated. To avoid the interference of foundation vibration on the transmission of the fault signal, the fault impact factor (FIF) is used to describe the intensity of the failure, which aligns well with the experimental signals. Based on the FIF, the vibration signal attenuation of nonlinear interfaces such as splines, bearings, and gear meshing interfaces is quantitatively evaluated. To clarify the transfer paths of fault vibration signals inside the gearbox, the transfer path area method (TPAM) based on FIF is proposed. According to the simulated results, the primary transfer paths of fault vibration signals within the gearbox have been identified, which is of great help in understanding the transmission and attenuation of vibration signals in planetary gearboxes.</p>\",\"PeriodicalId\":21612,\"journal\":{\"name\":\"Science China Technological Sciences\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Technological Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11431-024-2731-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-024-2731-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

行星齿轮箱在风力涡轮机和精密车辆等大型机械中改变转速和传输动力方面发挥着至关重要的作用。行星齿轮箱中有许多非线性接口,如花键、轴承和齿轮对,由此产生的振动信号传输和衰减机制仍是未知数。本研究提出了一种定量分析振动信号传递和衰减的新方法。提出了一种考虑到非线性齿轮啮合的行星齿轮箱多体动力学模型,并进行了实验验证。为避免地基振动对故障信号传输的干扰,采用了故障影响因子(FIF)来描述故障强度,这与实验信号非常吻合。基于 FIF,对花键、轴承和齿轮啮合界面等非线性界面的振动信号衰减进行了定量评估。为明确故障振动信号在齿轮箱内部的传递路径,提出了基于 FIF 的传递路径面积法(TPAM)。根据模拟结果,确定了故障振动信号在齿轮箱内的主要传递路径,这对理解行星齿轮箱内振动信号的传递和衰减有很大帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel method for vibration signal transmission and attenuation analysis in complex planetary gearboxes

Planetary gearboxes play a crucial role in altering rotary speed and transmitting power in large machines like wind turbines and sophisticated vehicles. There are many nonlinear interfaces, such as splines, bearings, and gear pairs, in planetary gearboxes, and the resulting vibration signal transmission and attenuation mechanisms are still unknown. In this study, a novel method for quantitatively analyzing the transmission and attenuation of vibration signals is proposed. A multibody dynamic model of the planetary gearbox considering nonlinear gear meshing is presented and experimentally validated. To avoid the interference of foundation vibration on the transmission of the fault signal, the fault impact factor (FIF) is used to describe the intensity of the failure, which aligns well with the experimental signals. Based on the FIF, the vibration signal attenuation of nonlinear interfaces such as splines, bearings, and gear meshing interfaces is quantitatively evaluated. To clarify the transfer paths of fault vibration signals inside the gearbox, the transfer path area method (TPAM) based on FIF is proposed. According to the simulated results, the primary transfer paths of fault vibration signals within the gearbox have been identified, which is of great help in understanding the transmission and attenuation of vibration signals in planetary gearboxes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Technological Sciences
Science China Technological Sciences ENGINEERING, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
10.90%
发文量
4380
审稿时长
3.3 months
期刊介绍: Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of technological sciences. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信