Floquet-Weyl 半金属中的非微扰非线性传输

Matthew W. Day, Kateryna Kusyak, Felix Sturm, Juan I. Aranzadi, Hope M. Bretscher, Michael Fechner, Toru Matsuyama, Marios H. Michael, Benedikt F. Schulte, Xinyu Li, Jesse Hagelstein, Dorothee Herrmann, Gunda Kipp, Alex M. Potts, Jonathan M. DeStefano, Chaowei Hu, Yunfei Huang, Takashi Taniguchi, Kenji Watanabe, Guido Meier, Dongbin Shin, Angel Rubio, Jiun-Haw Chu, Dante M. Kennes, Michael A. Sentef, James W. McIver
{"title":"Floquet-Weyl 半金属中的非微扰非线性传输","authors":"Matthew W. Day, Kateryna Kusyak, Felix Sturm, Juan I. Aranzadi, Hope M. Bretscher, Michael Fechner, Toru Matsuyama, Marios H. Michael, Benedikt F. Schulte, Xinyu Li, Jesse Hagelstein, Dorothee Herrmann, Gunda Kipp, Alex M. Potts, Jonathan M. DeStefano, Chaowei Hu, Yunfei Huang, Takashi Taniguchi, Kenji Watanabe, Guido Meier, Dongbin Shin, Angel Rubio, Jiun-Haw Chu, Dante M. Kennes, Michael A. Sentef, James W. McIver","doi":"arxiv-2409.04531","DOIUrl":null,"url":null,"abstract":"Periodic laser driving, known as Floquet engineering, is a powerful tool to\nmanipulate the properties of quantum materials. Using circularly polarized\nlight, artificial magnetic fields, called Berry curvature, can be created in\nthe photon-dressed Floquet-Bloch states that form. This mechanism, when applied\nto 3D Dirac and Weyl systems, is predicted to lead to photon-dressed movement\nof Weyl nodes which should be detectable in the transport sector. The transport\nresponse of such a topological light-matter hybrid, however, remains\nexperimentally unknown. Here, we report on the transport properties of the\ntype-II Weyl semimetal T$\\mathrm{_d}$-MoTe$_\\mathrm{2}$ illuminated by a\nfemtosecond pulse of circularly polarized light. Using an ultrafast\noptoelectronic device architecture, we observed injection currents and a\nhelicity-dependent anomalous Hall effect whose scaling with laser field\nstrongly deviate from the perturbative laws of nonlinear optics. We show using\nFloquet theory that this discovery corresponds to the formation of a magnetic\nFloquet-Weyl semimetal state. Numerical ab initio simulations support this\ninterpretation, indicating that the light-induced motion of the Weyl nodes\ncontributes substantially to the measured transport signals. This work\ndemonstrates the ability to generate large effective magnetic fields ($>$ 30T)\nwith light, which can be used to manipulate the magnetic and topological\nproperties of a range of quantum materials.","PeriodicalId":501171,"journal":{"name":"arXiv - PHYS - Strongly Correlated Electrons","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonperturbative Nonlinear Transport in a Floquet-Weyl Semimetal\",\"authors\":\"Matthew W. Day, Kateryna Kusyak, Felix Sturm, Juan I. Aranzadi, Hope M. Bretscher, Michael Fechner, Toru Matsuyama, Marios H. Michael, Benedikt F. Schulte, Xinyu Li, Jesse Hagelstein, Dorothee Herrmann, Gunda Kipp, Alex M. Potts, Jonathan M. DeStefano, Chaowei Hu, Yunfei Huang, Takashi Taniguchi, Kenji Watanabe, Guido Meier, Dongbin Shin, Angel Rubio, Jiun-Haw Chu, Dante M. Kennes, Michael A. Sentef, James W. McIver\",\"doi\":\"arxiv-2409.04531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic laser driving, known as Floquet engineering, is a powerful tool to\\nmanipulate the properties of quantum materials. Using circularly polarized\\nlight, artificial magnetic fields, called Berry curvature, can be created in\\nthe photon-dressed Floquet-Bloch states that form. This mechanism, when applied\\nto 3D Dirac and Weyl systems, is predicted to lead to photon-dressed movement\\nof Weyl nodes which should be detectable in the transport sector. The transport\\nresponse of such a topological light-matter hybrid, however, remains\\nexperimentally unknown. Here, we report on the transport properties of the\\ntype-II Weyl semimetal T$\\\\mathrm{_d}$-MoTe$_\\\\mathrm{2}$ illuminated by a\\nfemtosecond pulse of circularly polarized light. Using an ultrafast\\noptoelectronic device architecture, we observed injection currents and a\\nhelicity-dependent anomalous Hall effect whose scaling with laser field\\nstrongly deviate from the perturbative laws of nonlinear optics. We show using\\nFloquet theory that this discovery corresponds to the formation of a magnetic\\nFloquet-Weyl semimetal state. Numerical ab initio simulations support this\\ninterpretation, indicating that the light-induced motion of the Weyl nodes\\ncontributes substantially to the measured transport signals. This work\\ndemonstrates the ability to generate large effective magnetic fields ($>$ 30T)\\nwith light, which can be used to manipulate the magnetic and topological\\nproperties of a range of quantum materials.\",\"PeriodicalId\":501171,\"journal\":{\"name\":\"arXiv - PHYS - Strongly Correlated Electrons\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

周期性激光驱动被称为 "弗洛克工程"(Floquet engineering),是操纵量子材料特性的有力工具。利用圆偏振光,可以在形成的光子压制 Floquet-Bloch 态中产生人工磁场(称为贝里曲率)。这种机制应用于三维狄拉克和韦尔系统时,预计会导致韦尔节点的光子压制运动,这种运动应该可以在输运部门检测到。然而,这种拓扑光物质混合体的输运响应在实验上仍然是未知的。在这里,我们报告了在半秒脉冲圆偏振光照射下的II型Weyl半金属T$\mathrm{_d}$-MoTe$_\mathrm{2}$的输运特性。通过使用超快光电器件结构,我们观测到了注入电流和随激光场缩放的反常霍尔效应,它们严重偏离了非线性光学的微扰定律。我们利用费洛特理论证明,这一发现与磁性费洛特-韦尔半金属态的形成相对应。数值模拟支持这一解释,表明光引起的韦尔节点运动对测量到的传输信号有很大贡献。这项工作展示了用光产生大有效磁场($>$ 30T)的能力,这种能力可用于操纵一系列量子材料的磁性和拓扑特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonperturbative Nonlinear Transport in a Floquet-Weyl Semimetal
Periodic laser driving, known as Floquet engineering, is a powerful tool to manipulate the properties of quantum materials. Using circularly polarized light, artificial magnetic fields, called Berry curvature, can be created in the photon-dressed Floquet-Bloch states that form. This mechanism, when applied to 3D Dirac and Weyl systems, is predicted to lead to photon-dressed movement of Weyl nodes which should be detectable in the transport sector. The transport response of such a topological light-matter hybrid, however, remains experimentally unknown. Here, we report on the transport properties of the type-II Weyl semimetal T$\mathrm{_d}$-MoTe$_\mathrm{2}$ illuminated by a femtosecond pulse of circularly polarized light. Using an ultrafast optoelectronic device architecture, we observed injection currents and a helicity-dependent anomalous Hall effect whose scaling with laser field strongly deviate from the perturbative laws of nonlinear optics. We show using Floquet theory that this discovery corresponds to the formation of a magnetic Floquet-Weyl semimetal state. Numerical ab initio simulations support this interpretation, indicating that the light-induced motion of the Weyl nodes contributes substantially to the measured transport signals. This work demonstrates the ability to generate large effective magnetic fields ($>$ 30T) with light, which can be used to manipulate the magnetic and topological properties of a range of quantum materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信