BiTing Qiao, DongBao Song, Hao Chen, YiMing Yao, HongWen Sun
{"title":"大气中遗留的和新出现的全氟烷基和多氟烷基物质 (PFAS):全面回顾","authors":"BiTing Qiao, DongBao Song, Hao Chen, YiMing Yao, HongWen Sun","doi":"10.1007/s11431-024-2689-7","DOIUrl":null,"url":null,"abstract":"<p>With long-term production and widespread application, per- and polyfluoroalkyl substances (PFAS) have been detected in various media worldwide, including the atmosphere. Since the gradual restriction and phase-out of C<sub>8</sub> perfluoroalkyl acids (PFAAs), environmental contamination by emerging PFAS substitutes such as short-chain PFAA homologues, perfluoroether carboxylic, and sulfonic acids has been reported. Although there has been extensive monitoring of emerging PFAS substitutes in the aquatic environment, few studies have conducted target analysis and nontarget screening (NTS) of emerging unknown PFAS in the atmosphere over the past decade. To fill the gap, this review focused on emerging PFAS in the atmosphere in addition to legacy PFAS. The reported sampling, pretreatment, and instrumental analysis methods for target analysis and NTS of both neutral and ionic PFAS in the atmosphere are summarized, along with the advantages and current limitations of different sampling and NTS methods for PFAS in the atmosphere. The global levels, composition, and spatiotemporal distribution characteristics of legacy and emerging PFAS in the atmosphere are summarized and their transport, transformation, and dry/wet deposition are elucidated. The review highlights the importance of developing and applying the all-in-one strategy integrating target, suspect screening, and NTS to gain insights into emerging PFAS in the atmosphere and provide a reference for future research.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in the atmosphere: A comprehensive review\",\"authors\":\"BiTing Qiao, DongBao Song, Hao Chen, YiMing Yao, HongWen Sun\",\"doi\":\"10.1007/s11431-024-2689-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With long-term production and widespread application, per- and polyfluoroalkyl substances (PFAS) have been detected in various media worldwide, including the atmosphere. Since the gradual restriction and phase-out of C<sub>8</sub> perfluoroalkyl acids (PFAAs), environmental contamination by emerging PFAS substitutes such as short-chain PFAA homologues, perfluoroether carboxylic, and sulfonic acids has been reported. Although there has been extensive monitoring of emerging PFAS substitutes in the aquatic environment, few studies have conducted target analysis and nontarget screening (NTS) of emerging unknown PFAS in the atmosphere over the past decade. To fill the gap, this review focused on emerging PFAS in the atmosphere in addition to legacy PFAS. The reported sampling, pretreatment, and instrumental analysis methods for target analysis and NTS of both neutral and ionic PFAS in the atmosphere are summarized, along with the advantages and current limitations of different sampling and NTS methods for PFAS in the atmosphere. The global levels, composition, and spatiotemporal distribution characteristics of legacy and emerging PFAS in the atmosphere are summarized and their transport, transformation, and dry/wet deposition are elucidated. The review highlights the importance of developing and applying the all-in-one strategy integrating target, suspect screening, and NTS to gain insights into emerging PFAS in the atmosphere and provide a reference for future research.</p>\",\"PeriodicalId\":21612,\"journal\":{\"name\":\"Science China Technological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Technological Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11431-024-2689-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-024-2689-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in the atmosphere: A comprehensive review
With long-term production and widespread application, per- and polyfluoroalkyl substances (PFAS) have been detected in various media worldwide, including the atmosphere. Since the gradual restriction and phase-out of C8 perfluoroalkyl acids (PFAAs), environmental contamination by emerging PFAS substitutes such as short-chain PFAA homologues, perfluoroether carboxylic, and sulfonic acids has been reported. Although there has been extensive monitoring of emerging PFAS substitutes in the aquatic environment, few studies have conducted target analysis and nontarget screening (NTS) of emerging unknown PFAS in the atmosphere over the past decade. To fill the gap, this review focused on emerging PFAS in the atmosphere in addition to legacy PFAS. The reported sampling, pretreatment, and instrumental analysis methods for target analysis and NTS of both neutral and ionic PFAS in the atmosphere are summarized, along with the advantages and current limitations of different sampling and NTS methods for PFAS in the atmosphere. The global levels, composition, and spatiotemporal distribution characteristics of legacy and emerging PFAS in the atmosphere are summarized and their transport, transformation, and dry/wet deposition are elucidated. The review highlights the importance of developing and applying the all-in-one strategy integrating target, suspect screening, and NTS to gain insights into emerging PFAS in the atmosphere and provide a reference for future research.
期刊介绍:
Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of technological sciences.
Brief reports present short reports in a timely manner of the latest important results.