二维环形编码中的低纠缠激励融合

Jing-Yu Zhao, Xie Chen
{"title":"二维环形编码中的低纠缠激励融合","authors":"Jing-Yu Zhao, Xie Chen","doi":"arxiv-2409.07544","DOIUrl":null,"url":null,"abstract":"On top of a $D$-dimensional gapped bulk state, Low Entanglement Excitations\n(LEE) on $d$($<D$)-dimensional sub-manifolds can have extensive energy but\npreserves the entanglement area law of the ground state. Due to their\nmulti-dimensional nature, the LEEs embody a higher-category structure in\nquantum systems. They are the ground state of a modified Hamiltonian and hence\ncapture the notions of `defects' of generalized symmetries. In previous works,\nwe studied the low-entanglement excitations in a trivial phase as well as those\nin invertible phases. We find that LEEs in these phases have the same structure\nas lower-dimensional gapped phases and their defects within. In this paper, we\nstudy the LEEs inside non-invertible topological phases. We focus on the simple\nexample of $\\mathbb{Z}_2$ toric code and discuss how the fusion result of 1d\nLEEs with 0d morphisms can depend on both the choice of fusion circuit and the\nordering of the fused defects.","PeriodicalId":501171,"journal":{"name":"arXiv - PHYS - Strongly Correlated Electrons","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusion of Low-Entanglement Excitations in 2D Toric Code\",\"authors\":\"Jing-Yu Zhao, Xie Chen\",\"doi\":\"arxiv-2409.07544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On top of a $D$-dimensional gapped bulk state, Low Entanglement Excitations\\n(LEE) on $d$($<D$)-dimensional sub-manifolds can have extensive energy but\\npreserves the entanglement area law of the ground state. Due to their\\nmulti-dimensional nature, the LEEs embody a higher-category structure in\\nquantum systems. They are the ground state of a modified Hamiltonian and hence\\ncapture the notions of `defects' of generalized symmetries. In previous works,\\nwe studied the low-entanglement excitations in a trivial phase as well as those\\nin invertible phases. We find that LEEs in these phases have the same structure\\nas lower-dimensional gapped phases and their defects within. In this paper, we\\nstudy the LEEs inside non-invertible topological phases. We focus on the simple\\nexample of $\\\\mathbb{Z}_2$ toric code and discuss how the fusion result of 1d\\nLEEs with 0d morphisms can depend on both the choice of fusion circuit and the\\nordering of the fused defects.\",\"PeriodicalId\":501171,\"journal\":{\"name\":\"arXiv - PHYS - Strongly Correlated Electrons\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在$D$维间隙体态之上,$d$($本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Fusion of Low-Entanglement Excitations in 2D Toric Code
On top of a $D$-dimensional gapped bulk state, Low Entanglement Excitations (LEE) on $d$($
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信