希尔伯特空间中一类新的富集严格伪展开映射的弱收敛定理和强收敛定理

Imo Kalu Agwu, Hüseyin Işık, Donatus Ikechi Igbokwe
{"title":"希尔伯特空间中一类新的富集严格伪展开映射的弱收敛定理和强收敛定理","authors":"Imo Kalu Agwu, Hüseyin Işık, Donatus Ikechi Igbokwe","doi":"10.1186/s13663-024-00770-5","DOIUrl":null,"url":null,"abstract":"Let Ω be a nonempty closed convex subset of a real Hilbert space $\\mathfrak{H}$ . Let ℑ be a nonspreading mapping from Ω into itself. Define two sequences $\\{\\psi _{{n}}\\}_{n=1}^{\\infty}$ and $\\{\\phi _{{n}}\\}_{n=1}^{\\infty}$ as follows: $$\\begin{aligned} \\textstyle\\begin{cases} \\psi _{n+1}=\\pi _{n}\\psi _{{n}}+(1-\\pi _{n})\\Im \\psi _{{n}}, \\\\ \\phi _{{n}}=\\dfrac{1}{n}\\underset{t=1}{\\overset{n}{\\sum}}\\psi _{t}, \\end{cases}\\displaystyle \\end{aligned}$$ for $n\\in \\mathit{N}$ , where $0\\leq \\pi _{n}\\leq 1$ , and $\\pi _{n} \\rightarrow 0$ . In 2010, Kurokawa and Takahashi established weak and strong convergence theorems of the sequences developed from the above Baillion-type iteration method (Nonlinear Anal. 73:1562–1568, 2010). In this paper, we prove weak and strong convergence theorems for a new class of $(\\eta ,\\beta )$ -enriched strictly pseudononspreading ( $(\\eta ,\\beta )$ -ESPN) maps, more general than that studied by Kurokawa and W. Takahashi in the setup of real Hilbert spaces. Further, by means of a robust auxiliary map incorporated in our theorems, the strong convergence of the sequence generated by Halpern-type iterative algorithm is proved thereby resolving in the affirmative the open problem raised by Kurokawa and Takahashi in their concluding remark for the case in which the map ℑ is averaged. Some nontrivial examples are given, and the results obtained extend, improve, and generalize several well-known results in the current literature.","PeriodicalId":12293,"journal":{"name":"Fixed Point Theory and Applications","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak and strong convergence theorems for a new class of enriched strictly pseudononspreading mappings in Hilbert spaces\",\"authors\":\"Imo Kalu Agwu, Hüseyin Işık, Donatus Ikechi Igbokwe\",\"doi\":\"10.1186/s13663-024-00770-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Ω be a nonempty closed convex subset of a real Hilbert space $\\\\mathfrak{H}$ . Let ℑ be a nonspreading mapping from Ω into itself. Define two sequences $\\\\{\\\\psi _{{n}}\\\\}_{n=1}^{\\\\infty}$ and $\\\\{\\\\phi _{{n}}\\\\}_{n=1}^{\\\\infty}$ as follows: $$\\\\begin{aligned} \\\\textstyle\\\\begin{cases} \\\\psi _{n+1}=\\\\pi _{n}\\\\psi _{{n}}+(1-\\\\pi _{n})\\\\Im \\\\psi _{{n}}, \\\\\\\\ \\\\phi _{{n}}=\\\\dfrac{1}{n}\\\\underset{t=1}{\\\\overset{n}{\\\\sum}}\\\\psi _{t}, \\\\end{cases}\\\\displaystyle \\\\end{aligned}$$ for $n\\\\in \\\\mathit{N}$ , where $0\\\\leq \\\\pi _{n}\\\\leq 1$ , and $\\\\pi _{n} \\\\rightarrow 0$ . In 2010, Kurokawa and Takahashi established weak and strong convergence theorems of the sequences developed from the above Baillion-type iteration method (Nonlinear Anal. 73:1562–1568, 2010). In this paper, we prove weak and strong convergence theorems for a new class of $(\\\\eta ,\\\\beta )$ -enriched strictly pseudononspreading ( $(\\\\eta ,\\\\beta )$ -ESPN) maps, more general than that studied by Kurokawa and W. Takahashi in the setup of real Hilbert spaces. Further, by means of a robust auxiliary map incorporated in our theorems, the strong convergence of the sequence generated by Halpern-type iterative algorithm is proved thereby resolving in the affirmative the open problem raised by Kurokawa and Takahashi in their concluding remark for the case in which the map ℑ is averaged. Some nontrivial examples are given, and the results obtained extend, improve, and generalize several well-known results in the current literature.\",\"PeriodicalId\":12293,\"journal\":{\"name\":\"Fixed Point Theory and Applications\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fixed Point Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13663-024-00770-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed Point Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13663-024-00770-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 Ω 是实希尔伯特空间 $\mathfrak{H}$ 的一个非空封闭凸子集。让 ℑ 是一个从 Ω 到自身的非平展映射。定义两个序列 $\{psi _{n}}\}_{n=1}^{infty}$ 和 $\{phi _{n}}\}_{n=1}^{infty}$ 如下:$$begin{aligned}\contextstyle\begin{cases}\psi _{n+1}=\pi _{n}\psi _{n}}+(1-\pi _{n})\Im \psi _{{n}}, \ \phi _{{n}}=\dfrac{1}{n}\underset{t=1}{overset{n}\{sum}\psi _{t}、\end{cases}\displaystyle\end{aligned}$$ for $n\in \mathit{N}$ , 其中 $0\leq \pi _{n}\leq 1$ , 和 $\pi _{n}.\右边为 0$ 。2010 年,Kurokawa 和 Takahashi 建立了由上述 Baillion 型迭代法发展而来的序列的弱收敛和强收敛定理 (Nonlinear Anal. 73:1562-1568, 2010)。在本文中,我们证明了一类新的$(\eta ,\beta)$-enriched strictly pseudononspreading ( $(\eta ,\beta)$-ESPN)映射的弱收敛性和强收敛性定理。此外,通过在我们的定理中加入一个稳健的辅助映射,证明了哈尔珀恩型迭代算法产生的序列的强收敛性,从而肯定地解决了黑川和高桥在他们的结语中针对映射ℑ被平均化的情况提出的未决问题。文中给出了一些非难例,并对现有文献中的几个著名结果进行了扩展、改进和概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak and strong convergence theorems for a new class of enriched strictly pseudononspreading mappings in Hilbert spaces
Let Ω be a nonempty closed convex subset of a real Hilbert space $\mathfrak{H}$ . Let ℑ be a nonspreading mapping from Ω into itself. Define two sequences $\{\psi _{{n}}\}_{n=1}^{\infty}$ and $\{\phi _{{n}}\}_{n=1}^{\infty}$ as follows: $$\begin{aligned} \textstyle\begin{cases} \psi _{n+1}=\pi _{n}\psi _{{n}}+(1-\pi _{n})\Im \psi _{{n}}, \\ \phi _{{n}}=\dfrac{1}{n}\underset{t=1}{\overset{n}{\sum}}\psi _{t}, \end{cases}\displaystyle \end{aligned}$$ for $n\in \mathit{N}$ , where $0\leq \pi _{n}\leq 1$ , and $\pi _{n} \rightarrow 0$ . In 2010, Kurokawa and Takahashi established weak and strong convergence theorems of the sequences developed from the above Baillion-type iteration method (Nonlinear Anal. 73:1562–1568, 2010). In this paper, we prove weak and strong convergence theorems for a new class of $(\eta ,\beta )$ -enriched strictly pseudononspreading ( $(\eta ,\beta )$ -ESPN) maps, more general than that studied by Kurokawa and W. Takahashi in the setup of real Hilbert spaces. Further, by means of a robust auxiliary map incorporated in our theorems, the strong convergence of the sequence generated by Halpern-type iterative algorithm is proved thereby resolving in the affirmative the open problem raised by Kurokawa and Takahashi in their concluding remark for the case in which the map ℑ is averaged. Some nontrivial examples are given, and the results obtained extend, improve, and generalize several well-known results in the current literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fixed Point Theory and Applications
Fixed Point Theory and Applications MATHEMATICS, APPLIED-MATHEMATICS
自引率
0.00%
发文量
0
期刊介绍: In a wide range of mathematical, computational, economical, modeling and engineering problems, the existence of a solution to a theoretical or real world problem is equivalent to the existence of a fixed point for a suitable map or operator. Fixed points are therefore of paramount importance in many areas of mathematics, sciences and engineering. The theory itself is a beautiful mixture of analysis (pure and applied), topology and geometry. Over the last 60 years or so, the theory of fixed points has been revealed as a very powerful and important tool in the study of nonlinear phenomena. In particular, fixed point techniques have been applied in such diverse fields as biology, chemistry, physics, engineering, game theory and economics. In numerous cases finding the exact solution is not possible; hence it is necessary to develop appropriate algorithms to approximate the requested result. This is strongly related to control and optimization problems arising in the different sciences and in engineering problems. Many situations in the study of nonlinear equations, calculus of variations, partial differential equations, optimal control and inverse problems can be formulated in terms of fixed point problems or optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信