Ajmal T. S., Rahul Kumar Singh, Shashi Bhushan Arya, Satish Kumar D.
{"title":"在合成油田水中通过激光表面熔化增强 X70 API 钢的耐流动加速腐蚀性能","authors":"Ajmal T. S., Rahul Kumar Singh, Shashi Bhushan Arya, Satish Kumar D.","doi":"10.1002/maco.202414456","DOIUrl":null,"url":null,"abstract":"Hydrodynamic flow conditions play a critical role in piping failure due to sharp variations of the Reynolds number in process and petrochemical industries. The current study aims to enhance flow‐accelerated corrosion (FAC) resistance using metallurgy of the surface by utilizing the laser surface melting (LSM) technique. The FAC behavior of API X70 steel in simulated Indian synthetic oilfield water was studied by utilizing a closed‐loop corrosion apparatus to simulate the pipeline flow. Electrochemical corrosion experiments (AC and DC methods) were conducted at a constant fluid velocity of 3 m/s in untreated and LSM‐treated samples (at 2.5 and 3.0 kW) placed at a 90° pipe elbow. Experimental results showed that LSM‐treated samples displayed enhanced resistance to FAC, attributed to changes in surface metallurgy. Additionally, it was observed that the corrosion rate varied within the pipe elbow for the different samples at different locations.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Flow‐Accelerated Corrosion Resistance of X70 API Steel Through Laser Surface Melting in Synthetic Oilfield Water\",\"authors\":\"Ajmal T. S., Rahul Kumar Singh, Shashi Bhushan Arya, Satish Kumar D.\",\"doi\":\"10.1002/maco.202414456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrodynamic flow conditions play a critical role in piping failure due to sharp variations of the Reynolds number in process and petrochemical industries. The current study aims to enhance flow‐accelerated corrosion (FAC) resistance using metallurgy of the surface by utilizing the laser surface melting (LSM) technique. The FAC behavior of API X70 steel in simulated Indian synthetic oilfield water was studied by utilizing a closed‐loop corrosion apparatus to simulate the pipeline flow. Electrochemical corrosion experiments (AC and DC methods) were conducted at a constant fluid velocity of 3 m/s in untreated and LSM‐treated samples (at 2.5 and 3.0 kW) placed at a 90° pipe elbow. Experimental results showed that LSM‐treated samples displayed enhanced resistance to FAC, attributed to changes in surface metallurgy. Additionally, it was observed that the corrosion rate varied within the pipe elbow for the different samples at different locations.\",\"PeriodicalId\":18223,\"journal\":{\"name\":\"Materials and Corrosion\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/maco.202414456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/maco.202414456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在加工和石化工业中,由于雷诺数的急剧变化,水动力流动条件在管道故障中起着至关重要的作用。目前的研究旨在利用激光表面熔化(LSM)技术对表面进行冶金处理,从而增强抗流动加速腐蚀(FAC)能力。通过使用闭环腐蚀装置模拟管道流动,研究了 API X70 钢在模拟印度合成油田水中的 FAC 行为。在 3 米/秒的恒定流体速度下,对放置在 90° 管道弯头处的未处理和 LSM 处理样品(功率分别为 2.5 千瓦和 3.0 千瓦)进行了电化学腐蚀实验(交流和直流方法)。实验结果表明,经过 LSM 处理的样品显示出更强的抗 FAC 能力,这归因于表面冶金学的变化。此外,还观察到不同位置的不同样品在管道弯头内的腐蚀速率各不相同。
Enhancing the Flow‐Accelerated Corrosion Resistance of X70 API Steel Through Laser Surface Melting in Synthetic Oilfield Water
Hydrodynamic flow conditions play a critical role in piping failure due to sharp variations of the Reynolds number in process and petrochemical industries. The current study aims to enhance flow‐accelerated corrosion (FAC) resistance using metallurgy of the surface by utilizing the laser surface melting (LSM) technique. The FAC behavior of API X70 steel in simulated Indian synthetic oilfield water was studied by utilizing a closed‐loop corrosion apparatus to simulate the pipeline flow. Electrochemical corrosion experiments (AC and DC methods) were conducted at a constant fluid velocity of 3 m/s in untreated and LSM‐treated samples (at 2.5 and 3.0 kW) placed at a 90° pipe elbow. Experimental results showed that LSM‐treated samples displayed enhanced resistance to FAC, attributed to changes in surface metallurgy. Additionally, it was observed that the corrosion rate varied within the pipe elbow for the different samples at different locations.