{"title":"具有漂移的抛物线方程的迁移性和时间尺度 1:第一个时间尺度","authors":"Claudio Landim, Jungkyoung Lee, Insuk Seo","doi":"10.1007/s00205-024-02031-6","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the elliptic operator given by </p><div><div><span>$$\\begin{aligned} {\\mathscr {L}}_{\\varepsilon }f\\,=\\, {\\varvec{b}} \\cdot \\nabla f \\,+\\, \\varepsilon \\, \\Delta f \\end{aligned}$$</span></div><div>\n (0.1)\n </div></div><p>for some smooth vector field <span>\\(\\varvec{b}:{\\mathbb R}^d\\rightarrow {\\mathbb R}^d\\)</span> and a small parameter <span>\\(\\varepsilon >0\\)</span>. Consider the initial-valued problem </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{aligned}&\\partial _ t u_\\varepsilon \\,=\\, {\\mathscr {L}}_\\varepsilon u_\\varepsilon , \\\\&u_\\varepsilon (0, \\cdot ) = u_0(\\cdot ) , \\end{aligned} \\right. \\end{aligned}$$</span></div><div>\n (0.2)\n </div></div><p>for some bounded continuous function <span>\\(u_0\\)</span>. Denote by <span>\\(\\mathcal {M}_0\\)</span> the set of critical points of <span>\\(\\varvec{b}\\)</span> which are stable stationary points for the ODE <span>\\(\\dot{\\varvec{x}} (t) = \\varvec{b} (\\varvec{x}(t))\\)</span>. Under the hypothesis that <span>\\(\\mathcal {M}_0\\)</span> is finite and <span>\\(\\varvec{b} = -(\\nabla U + \\varvec{\\ell })\\)</span>, where <span>\\(\\varvec{\\ell }\\)</span> is a divergence-free field orthogonal to <span>\\(\\nabla U\\)</span>, the main result of this article states that there exist a time-scale <span>\\(\\theta ^{(1)}_\\varepsilon \\)</span>, <span>\\(\\theta ^{(1)}_\\varepsilon \\rightarrow \\infty \\)</span> as <span>\\(\\varepsilon \\rightarrow 0\\)</span>, and a Markov semigroup <span>\\(\\{p_t: t\\ge 0\\}\\)</span> defined on <span>\\(\\mathcal {M}_0\\)</span> such that </p><div><div><span>$$\\begin{aligned} \\lim _{\\varepsilon \\rightarrow 0} u_\\varepsilon ( t \\, \\theta ^{(1)}_\\varepsilon , \\varvec{x} ) \\;=\\; \\sum _{\\varvec{m}'\\in \\mathcal {M}_0} p_t(\\varvec{m}, \\varvec{m}')\\, u_0(\\varvec{m}')\\; \\end{aligned}$$</span></div></div><p>for all <span>\\(t>0\\)</span> and <span>\\(\\varvec{x}\\)</span> in the domain of attraction of <span>\\(\\varvec{m}\\)</span> [for the ODE <span>\\(\\dot{\\varvec{x}}(t) = \\varvec{b}(\\varvec{x}(t))\\)</span>]. The time scale <span>\\(\\theta ^{(1)}\\)</span> is critical in the sense that, for all time scales <span>\\(\\varrho _\\varepsilon \\)</span> such that <span>\\(\\varrho _\\varepsilon \\rightarrow \\infty \\)</span>, <span>\\(\\varrho _\\varepsilon /\\theta ^{(1)}_\\varepsilon \\rightarrow 0\\)</span>, </p><div><div><span>$$\\begin{aligned} \\lim _{\\varepsilon \\rightarrow 0} u_\\varepsilon ( \\varrho _\\varepsilon , \\varvec{x} ) \\;=\\; u_0(\\varvec{m}) \\end{aligned}$$</span></div></div><p>for all <span>\\(\\varvec{x} \\in \\mathcal {D}(\\varvec{m})\\)</span>. Namely, <span>\\(\\theta _\\varepsilon ^{(1)}\\)</span> is the first scale at which the solution to the initial-valued problem starts to change. In a companion paper [20] we extend this result finding all critical time-scales at which the solution of the initial-valued problem (0.2) evolves smoothly in time and we show that the solution <span>\\(u_\\varepsilon \\)</span> is expressed in terms of the semigroup of some Markov chain taking values in sets formed by unions of critical points of <span>\\(\\varvec{b}\\)</span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metastability and Time Scales for Parabolic Equations with Drift 1: The First Time Scale\",\"authors\":\"Claudio Landim, Jungkyoung Lee, Insuk Seo\",\"doi\":\"10.1007/s00205-024-02031-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consider the elliptic operator given by </p><div><div><span>$$\\\\begin{aligned} {\\\\mathscr {L}}_{\\\\varepsilon }f\\\\,=\\\\, {\\\\varvec{b}} \\\\cdot \\\\nabla f \\\\,+\\\\, \\\\varepsilon \\\\, \\\\Delta f \\\\end{aligned}$$</span></div><div>\\n (0.1)\\n </div></div><p>for some smooth vector field <span>\\\\(\\\\varvec{b}:{\\\\mathbb R}^d\\\\rightarrow {\\\\mathbb R}^d\\\\)</span> and a small parameter <span>\\\\(\\\\varepsilon >0\\\\)</span>. Consider the initial-valued problem </p><div><div><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{aligned}&\\\\partial _ t u_\\\\varepsilon \\\\,=\\\\, {\\\\mathscr {L}}_\\\\varepsilon u_\\\\varepsilon , \\\\\\\\&u_\\\\varepsilon (0, \\\\cdot ) = u_0(\\\\cdot ) , \\\\end{aligned} \\\\right. \\\\end{aligned}$$</span></div><div>\\n (0.2)\\n </div></div><p>for some bounded continuous function <span>\\\\(u_0\\\\)</span>. Denote by <span>\\\\(\\\\mathcal {M}_0\\\\)</span> the set of critical points of <span>\\\\(\\\\varvec{b}\\\\)</span> which are stable stationary points for the ODE <span>\\\\(\\\\dot{\\\\varvec{x}} (t) = \\\\varvec{b} (\\\\varvec{x}(t))\\\\)</span>. Under the hypothesis that <span>\\\\(\\\\mathcal {M}_0\\\\)</span> is finite and <span>\\\\(\\\\varvec{b} = -(\\\\nabla U + \\\\varvec{\\\\ell })\\\\)</span>, where <span>\\\\(\\\\varvec{\\\\ell }\\\\)</span> is a divergence-free field orthogonal to <span>\\\\(\\\\nabla U\\\\)</span>, the main result of this article states that there exist a time-scale <span>\\\\(\\\\theta ^{(1)}_\\\\varepsilon \\\\)</span>, <span>\\\\(\\\\theta ^{(1)}_\\\\varepsilon \\\\rightarrow \\\\infty \\\\)</span> as <span>\\\\(\\\\varepsilon \\\\rightarrow 0\\\\)</span>, and a Markov semigroup <span>\\\\(\\\\{p_t: t\\\\ge 0\\\\}\\\\)</span> defined on <span>\\\\(\\\\mathcal {M}_0\\\\)</span> such that </p><div><div><span>$$\\\\begin{aligned} \\\\lim _{\\\\varepsilon \\\\rightarrow 0} u_\\\\varepsilon ( t \\\\, \\\\theta ^{(1)}_\\\\varepsilon , \\\\varvec{x} ) \\\\;=\\\\; \\\\sum _{\\\\varvec{m}'\\\\in \\\\mathcal {M}_0} p_t(\\\\varvec{m}, \\\\varvec{m}')\\\\, u_0(\\\\varvec{m}')\\\\; \\\\end{aligned}$$</span></div></div><p>for all <span>\\\\(t>0\\\\)</span> and <span>\\\\(\\\\varvec{x}\\\\)</span> in the domain of attraction of <span>\\\\(\\\\varvec{m}\\\\)</span> [for the ODE <span>\\\\(\\\\dot{\\\\varvec{x}}(t) = \\\\varvec{b}(\\\\varvec{x}(t))\\\\)</span>]. The time scale <span>\\\\(\\\\theta ^{(1)}\\\\)</span> is critical in the sense that, for all time scales <span>\\\\(\\\\varrho _\\\\varepsilon \\\\)</span> such that <span>\\\\(\\\\varrho _\\\\varepsilon \\\\rightarrow \\\\infty \\\\)</span>, <span>\\\\(\\\\varrho _\\\\varepsilon /\\\\theta ^{(1)}_\\\\varepsilon \\\\rightarrow 0\\\\)</span>, </p><div><div><span>$$\\\\begin{aligned} \\\\lim _{\\\\varepsilon \\\\rightarrow 0} u_\\\\varepsilon ( \\\\varrho _\\\\varepsilon , \\\\varvec{x} ) \\\\;=\\\\; u_0(\\\\varvec{m}) \\\\end{aligned}$$</span></div></div><p>for all <span>\\\\(\\\\varvec{x} \\\\in \\\\mathcal {D}(\\\\varvec{m})\\\\)</span>. Namely, <span>\\\\(\\\\theta _\\\\varepsilon ^{(1)}\\\\)</span> is the first scale at which the solution to the initial-valued problem starts to change. In a companion paper [20] we extend this result finding all critical time-scales at which the solution of the initial-valued problem (0.2) evolves smoothly in time and we show that the solution <span>\\\\(u_\\\\varepsilon \\\\)</span> is expressed in terms of the semigroup of some Markov chain taking values in sets formed by unions of critical points of <span>\\\\(\\\\varvec{b}\\\\)</span>.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02031-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02031-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Metastability and Time Scales for Parabolic Equations with Drift 1: The First Time Scale
Consider the elliptic operator given by
$$\begin{aligned} {\mathscr {L}}_{\varepsilon }f\,=\, {\varvec{b}} \cdot \nabla f \,+\, \varepsilon \, \Delta f \end{aligned}$$
(0.1)
for some smooth vector field \(\varvec{b}:{\mathbb R}^d\rightarrow {\mathbb R}^d\) and a small parameter \(\varepsilon >0\). Consider the initial-valued problem
for some bounded continuous function \(u_0\). Denote by \(\mathcal {M}_0\) the set of critical points of \(\varvec{b}\) which are stable stationary points for the ODE \(\dot{\varvec{x}} (t) = \varvec{b} (\varvec{x}(t))\). Under the hypothesis that \(\mathcal {M}_0\) is finite and \(\varvec{b} = -(\nabla U + \varvec{\ell })\), where \(\varvec{\ell }\) is a divergence-free field orthogonal to \(\nabla U\), the main result of this article states that there exist a time-scale \(\theta ^{(1)}_\varepsilon \), \(\theta ^{(1)}_\varepsilon \rightarrow \infty \) as \(\varepsilon \rightarrow 0\), and a Markov semigroup \(\{p_t: t\ge 0\}\) defined on \(\mathcal {M}_0\) such that
for all \(t>0\) and \(\varvec{x}\) in the domain of attraction of \(\varvec{m}\) [for the ODE \(\dot{\varvec{x}}(t) = \varvec{b}(\varvec{x}(t))\)]. The time scale \(\theta ^{(1)}\) is critical in the sense that, for all time scales \(\varrho _\varepsilon \) such that \(\varrho _\varepsilon \rightarrow \infty \), \(\varrho _\varepsilon /\theta ^{(1)}_\varepsilon \rightarrow 0\),
for all \(\varvec{x} \in \mathcal {D}(\varvec{m})\). Namely, \(\theta _\varepsilon ^{(1)}\) is the first scale at which the solution to the initial-valued problem starts to change. In a companion paper [20] we extend this result finding all critical time-scales at which the solution of the initial-valued problem (0.2) evolves smoothly in time and we show that the solution \(u_\varepsilon \) is expressed in terms of the semigroup of some Markov chain taking values in sets formed by unions of critical points of \(\varvec{b}\).