{"title":"剪切流下线性化两相流体界面问题的不稳定性和频谱","authors":"Xiao Liu","doi":"10.1007/s00205-024-02024-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the 2-dim two-phase interface Euler equation linearized at a pair of monotone shear flows in both fluids. We extend the Howard’s Semicircle Theorem and study the eigenvalue distribution of the linearized Euler system. Under certain conditions, there are exactly two eigenvalues for each fixed wave number <span>\\(k\\in \\mathbb {R}\\)</span> in the whole complex plane. We provide sufficient conditions for spectral instability arising from some boundary values of the shear flow velocity. A typical mode is the ocean-air system in which the density ratio of the fluids is sufficiently small. We give a complete picture of eigenvalue distribution for a certain class of shear flows in the ocean-air system.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instability and Spectrum of the Linearized Two-Phase Fluids Interface Problem at Shear Flows\",\"authors\":\"Xiao Liu\",\"doi\":\"10.1007/s00205-024-02024-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with the 2-dim two-phase interface Euler equation linearized at a pair of monotone shear flows in both fluids. We extend the Howard’s Semicircle Theorem and study the eigenvalue distribution of the linearized Euler system. Under certain conditions, there are exactly two eigenvalues for each fixed wave number <span>\\\\(k\\\\in \\\\mathbb {R}\\\\)</span> in the whole complex plane. We provide sufficient conditions for spectral instability arising from some boundary values of the shear flow velocity. A typical mode is the ocean-air system in which the density ratio of the fluids is sufficiently small. We give a complete picture of eigenvalue distribution for a certain class of shear flows in the ocean-air system.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02024-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02024-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Instability and Spectrum of the Linearized Two-Phase Fluids Interface Problem at Shear Flows
This paper is concerned with the 2-dim two-phase interface Euler equation linearized at a pair of monotone shear flows in both fluids. We extend the Howard’s Semicircle Theorem and study the eigenvalue distribution of the linearized Euler system. Under certain conditions, there are exactly two eigenvalues for each fixed wave number \(k\in \mathbb {R}\) in the whole complex plane. We provide sufficient conditions for spectral instability arising from some boundary values of the shear flow velocity. A typical mode is the ocean-air system in which the density ratio of the fluids is sufficiently small. We give a complete picture of eigenvalue distribution for a certain class of shear flows in the ocean-air system.