Marcelo F. Furtado, João Pablo Pinheiro da Silva, Karla Carolina V. De Sousa
{"title":"边界有临界增长的椭圆方程的符号变化解","authors":"Marcelo F. Furtado, João Pablo Pinheiro da Silva, Karla Carolina V. De Sousa","doi":"10.1007/s00030-024-00990-z","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of sign-changing solution to the problem </p><span>$$\\begin{aligned} -\\Delta u-\\dfrac{1}{2}\\left( x\\cdot \\nabla u\\right) =\\lambda u, \\hbox { in }\\mathbb {R}_{+}^{N}, \\qquad \\dfrac{\\partial u}{\\partial \\nu }=|u|^{2_*-2}u, \\hbox { on } \\partial \\mathbb {R}_{+}^{N}, \\end{aligned}$$</span><p>where <span>\\(\\mathbb {R}^N_+ = \\{(x',x_N): x' \\in \\mathbb {R}^{N-1},\\,x_N>0 \\}\\)</span> is the upper half-space, <span>\\(2_*:=2(N-1)/(N-2)\\)</span>, <span>\\(N \\ge 7\\)</span>, <span>\\(\\frac{\\partial u}{\\partial \\nu }\\)</span> is the partial outward normal derivative and the parameter <span>\\(\\lambda >0\\)</span> interacts with the spectrum of the linearized problem. In the proof, we apply variational methods.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"154 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sign-changing solution for an elliptic equation with critical growth at the boundary\",\"authors\":\"Marcelo F. Furtado, João Pablo Pinheiro da Silva, Karla Carolina V. De Sousa\",\"doi\":\"10.1007/s00030-024-00990-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the existence of sign-changing solution to the problem </p><span>$$\\\\begin{aligned} -\\\\Delta u-\\\\dfrac{1}{2}\\\\left( x\\\\cdot \\\\nabla u\\\\right) =\\\\lambda u, \\\\hbox { in }\\\\mathbb {R}_{+}^{N}, \\\\qquad \\\\dfrac{\\\\partial u}{\\\\partial \\\\nu }=|u|^{2_*-2}u, \\\\hbox { on } \\\\partial \\\\mathbb {R}_{+}^{N}, \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\mathbb {R}^N_+ = \\\\{(x',x_N): x' \\\\in \\\\mathbb {R}^{N-1},\\\\,x_N>0 \\\\}\\\\)</span> is the upper half-space, <span>\\\\(2_*:=2(N-1)/(N-2)\\\\)</span>, <span>\\\\(N \\\\ge 7\\\\)</span>, <span>\\\\(\\\\frac{\\\\partial u}{\\\\partial \\\\nu }\\\\)</span> is the partial outward normal derivative and the parameter <span>\\\\(\\\\lambda >0\\\\)</span> interacts with the spectrum of the linearized problem. In the proof, we apply variational methods.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"154 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00990-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00990-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
We prove the existence of sign changing solution to the problem $$\begin{aligned} -\Delta u-\dfrac{1}{2}\left( x\cdot \nabla u\right) =\lambda u, \hbox { in }\mathbb {R}_{+}^{N}, \qquad \dfrac{partial u}{\partial \nu }=|u|^{2_*-2}u, \hbox { on }.\partial \mathbb {R}_{+}^{N}, \end{aligned}$$ 其中 \(\mathbb {R}^N_+ = \{(x',x_N): x' \in \mathbb {R}^{N-1},\,x_N>0 \}\)是上半空间, \(2_*:=2(N-1)/(N-2)\),\(N \ge 7\),\(\frac{\partial u}{\partial \nu }\) 是部分向外法导数,参数 \(\lambda >0\) 与线性化问题的频谱相互作用。在证明过程中,我们运用了变分法。
Sign-changing solution for an elliptic equation with critical growth at the boundary
We prove the existence of sign-changing solution to the problem
$$\begin{aligned} -\Delta u-\dfrac{1}{2}\left( x\cdot \nabla u\right) =\lambda u, \hbox { in }\mathbb {R}_{+}^{N}, \qquad \dfrac{\partial u}{\partial \nu }=|u|^{2_*-2}u, \hbox { on } \partial \mathbb {R}_{+}^{N}, \end{aligned}$$
where \(\mathbb {R}^N_+ = \{(x',x_N): x' \in \mathbb {R}^{N-1},\,x_N>0 \}\) is the upper half-space, \(2_*:=2(N-1)/(N-2)\), \(N \ge 7\), \(\frac{\partial u}{\partial \nu }\) is the partial outward normal derivative and the parameter \(\lambda >0\) interacts with the spectrum of the linearized problem. In the proof, we apply variational methods.