Kun Yang, Bin Li, Hao Chen, Guo Li, Guobing Wei, Xiaodong Peng
{"title":"超轻 LA93-1(La/Ce)合金的变形行为、微结构演变和相变研究","authors":"Kun Yang, Bin Li, Hao Chen, Guo Li, Guobing Wei, Xiaodong Peng","doi":"10.1016/j.jmrt.2024.09.002","DOIUrl":null,"url":null,"abstract":"Isothermal compression tests were conducted out on the Mg–9Li–3Al-1(La/Ce) (wt.%) alloy under different deformation parameter through a Gleeble-3500 thermal-mechanical simulator. The flow curves at high strain rates exhibit a \"serrated flow”, which is a dynamic strain aging behavior. = 0.9253 and = 7.64% quantified the accuracy of the constitutive equations, indicating that this equation has reliable predictive ability. The thermal processing maps indicated that the safe processing region is T = 537–623 K, = 0.041–0.001 s. This alloy has excellent formability. When deformation is at T = 473 K, = 1 s, there are more deformed grains in two phases, and broken β-Li grains distributed in chains along the RD. In addition, some α-Mg phases precipitated from the β-Li phase, distributed along the β-Li grain boundaries, and they were dominated by recrystallized grains with low dislocation density. High-density dislocation regions located both at the grain boundaries and inside the grains. When deformation is at T = 473 K, = 0.01 s, all the deformed grains in two phases decreased with decreasing strain rate, and they transformed more into substructures. The high-density dislocation regions inside the grains gradually disappear. Additionally, the size of precipitated α-Mg phase increased slightly, which is still predominantly located at the grain boundaries. When deformation is at T = 623 K, = 0.01 s, the degree of recrystallization increases significantly with increasing temperature. The high-density dislocation regions almost disappeared. Interestingly, large amounts of α-Mg grains precipitated inside the β-Li grains.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on deformation behavior, microstructure evolution and phase transformation of ultra-light LA93-1(La/Ce) alloy\",\"authors\":\"Kun Yang, Bin Li, Hao Chen, Guo Li, Guobing Wei, Xiaodong Peng\",\"doi\":\"10.1016/j.jmrt.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Isothermal compression tests were conducted out on the Mg–9Li–3Al-1(La/Ce) (wt.%) alloy under different deformation parameter through a Gleeble-3500 thermal-mechanical simulator. The flow curves at high strain rates exhibit a \\\"serrated flow”, which is a dynamic strain aging behavior. = 0.9253 and = 7.64% quantified the accuracy of the constitutive equations, indicating that this equation has reliable predictive ability. The thermal processing maps indicated that the safe processing region is T = 537–623 K, = 0.041–0.001 s. This alloy has excellent formability. When deformation is at T = 473 K, = 1 s, there are more deformed grains in two phases, and broken β-Li grains distributed in chains along the RD. In addition, some α-Mg phases precipitated from the β-Li phase, distributed along the β-Li grain boundaries, and they were dominated by recrystallized grains with low dislocation density. High-density dislocation regions located both at the grain boundaries and inside the grains. When deformation is at T = 473 K, = 0.01 s, all the deformed grains in two phases decreased with decreasing strain rate, and they transformed more into substructures. The high-density dislocation regions inside the grains gradually disappear. Additionally, the size of precipitated α-Mg phase increased slightly, which is still predominantly located at the grain boundaries. When deformation is at T = 623 K, = 0.01 s, the degree of recrystallization increases significantly with increasing temperature. The high-density dislocation regions almost disappeared. Interestingly, large amounts of α-Mg grains precipitated inside the β-Li grains.\",\"PeriodicalId\":501120,\"journal\":{\"name\":\"Journal of Materials Research and Technology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmrt.2024.09.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.09.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
通过 Gleeble-3500 热机械模拟器对 Mg-9Li-3Al-1(La/Ce)(重量百分比)合金在不同变形参数下进行了等温压缩试验。高应变速率下的流动曲线呈现出 "锯齿流动",这是一种动态应变时效行为。 = 0.9253 和 = 7.64% 量化了构成方程的准确性,表明该方程具有可靠的预测能力。热加工图显示,安全加工区域为 T = 537-623 K,= 0.041-0.001 s。当变形温度为 T = 473 K, = 1 s 时,两相变形晶粒较多,β-Li 晶粒破碎,沿 RD 呈链状分布。此外,一些 α-Mg 相从 β-Li 相中析出,沿 β-Li 晶界分布,并以低位错密度的再结晶晶粒为主。高密度位错区位于晶界和晶粒内部。当变形在 T = 473 K, = 0.01 s 时,两相中所有变形晶粒都随着应变速率的降低而减少,并更多地转变为亚结构。晶粒内部的高密度位错区逐渐消失。此外,析出的 α-Mg 相的尺寸略有增加,但仍主要位于晶界。当变形温度为 T = 623 K, = 0.01 s 时,再结晶程度随温度升高而显著增加。高密度位错区域几乎消失。有趣的是,β-Li 晶粒内部析出了大量的 α-Mg 晶粒。
Research on deformation behavior, microstructure evolution and phase transformation of ultra-light LA93-1(La/Ce) alloy
Isothermal compression tests were conducted out on the Mg–9Li–3Al-1(La/Ce) (wt.%) alloy under different deformation parameter through a Gleeble-3500 thermal-mechanical simulator. The flow curves at high strain rates exhibit a "serrated flow”, which is a dynamic strain aging behavior. = 0.9253 and = 7.64% quantified the accuracy of the constitutive equations, indicating that this equation has reliable predictive ability. The thermal processing maps indicated that the safe processing region is T = 537–623 K, = 0.041–0.001 s. This alloy has excellent formability. When deformation is at T = 473 K, = 1 s, there are more deformed grains in two phases, and broken β-Li grains distributed in chains along the RD. In addition, some α-Mg phases precipitated from the β-Li phase, distributed along the β-Li grain boundaries, and they were dominated by recrystallized grains with low dislocation density. High-density dislocation regions located both at the grain boundaries and inside the grains. When deformation is at T = 473 K, = 0.01 s, all the deformed grains in two phases decreased with decreasing strain rate, and they transformed more into substructures. The high-density dislocation regions inside the grains gradually disappear. Additionally, the size of precipitated α-Mg phase increased slightly, which is still predominantly located at the grain boundaries. When deformation is at T = 623 K, = 0.01 s, the degree of recrystallization increases significantly with increasing temperature. The high-density dislocation regions almost disappeared. Interestingly, large amounts of α-Mg grains precipitated inside the β-Li grains.