Shadab Ahmad, Abdul Wahab Hashmi, Jashanpreet Singh, Kunal Arora, Yebing Tian, Faiz Iqbal, Mawaheb Al-Dossari, M. Ijaz Khan
{"title":"形状记忆合金增材制造的创新:合金、微结构、处理、应用","authors":"Shadab Ahmad, Abdul Wahab Hashmi, Jashanpreet Singh, Kunal Arora, Yebing Tian, Faiz Iqbal, Mawaheb Al-Dossari, M. Ijaz Khan","doi":"10.1016/j.jmrt.2024.08.213","DOIUrl":null,"url":null,"abstract":"Exploring shape memory alloys (SMAs) is like diving into a world of material magic, especially when combined with additive manufacturing techniques. This detailed assessment delves into the fascinating realm of additive manufactured SMAs, examining their complex fabrication processes, captivating internal structures, wide-ranging applications, and unique properties. It is remarkable to observe how the combination of metals, particularly nickel and titanium, creates the very essence of SMA's capabilities and various other material combination for novel SMAs. Additional insights are provided regarding how additive manufacturing parameters and appropriate post-treatments can enable these materials to accomplish extraordinary functionalities. These SMAs also possess the ability to recollect and move, demonstrating superelasticity and the capacity to regain their original shape in various capacities. However, there are promising prospects for the development of novel SMA mixtures, enhanced post-treatments methods, and even more intelligent and responsive products with dimensional accuracy and uniformity. This work presents insights on opportunities in industries for resilient materials, ranging from everyday devices to the immense expanse of space and the human body. Even with the advancements, there is still work to be done in continuously improving their design and pocket comfort. This review not only presents information but also envisions a future in which additive manufactured SMAs are central to advancements in engineering and other fields.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovations in additive manufacturing of shape memory alloys: Alloys, microstructures, treatments, applications\",\"authors\":\"Shadab Ahmad, Abdul Wahab Hashmi, Jashanpreet Singh, Kunal Arora, Yebing Tian, Faiz Iqbal, Mawaheb Al-Dossari, M. Ijaz Khan\",\"doi\":\"10.1016/j.jmrt.2024.08.213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring shape memory alloys (SMAs) is like diving into a world of material magic, especially when combined with additive manufacturing techniques. This detailed assessment delves into the fascinating realm of additive manufactured SMAs, examining their complex fabrication processes, captivating internal structures, wide-ranging applications, and unique properties. It is remarkable to observe how the combination of metals, particularly nickel and titanium, creates the very essence of SMA's capabilities and various other material combination for novel SMAs. Additional insights are provided regarding how additive manufacturing parameters and appropriate post-treatments can enable these materials to accomplish extraordinary functionalities. These SMAs also possess the ability to recollect and move, demonstrating superelasticity and the capacity to regain their original shape in various capacities. However, there are promising prospects for the development of novel SMA mixtures, enhanced post-treatments methods, and even more intelligent and responsive products with dimensional accuracy and uniformity. This work presents insights on opportunities in industries for resilient materials, ranging from everyday devices to the immense expanse of space and the human body. Even with the advancements, there is still work to be done in continuously improving their design and pocket comfort. This review not only presents information but also envisions a future in which additive manufactured SMAs are central to advancements in engineering and other fields.\",\"PeriodicalId\":501120,\"journal\":{\"name\":\"Journal of Materials Research and Technology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmrt.2024.08.213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.08.213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
探索形状记忆合金(SMA)就像潜入一个神奇的材料世界,尤其是在与快速成型技术相结合的情况下。本详细评估深入探讨了增材制造 SMA 的迷人领域,研究了其复杂的制造工艺、迷人的内部结构、广泛的应用和独特的性能。观察金属(尤其是镍和钛)的组合如何创造出 SMA 功能的精髓,以及新型 SMA 的各种其他材料组合,令人叹为观止。此外,还深入探讨了增材制造参数和适当的后处理如何使这些材料实现非凡的功能。这些 SMA 还具有回弹和移动能力,表现出超弹性和以各种方式恢复原状的能力。然而,新型 SMA 混合物、增强型后处理方法以及具有尺寸精度和均匀性的更智能、更灵敏产品的开发前景广阔。从日常设备到广袤的太空和人体,这项研究深入探讨了弹性材料在各行各业的应用机会。即使取得了进步,在不断改进设计和提高口袋舒适度方面仍有许多工作要做。这篇综述不仅介绍了相关信息,还展望了增材制造 SMA 成为工程和其他领域进步核心的未来。
Innovations in additive manufacturing of shape memory alloys: Alloys, microstructures, treatments, applications
Exploring shape memory alloys (SMAs) is like diving into a world of material magic, especially when combined with additive manufacturing techniques. This detailed assessment delves into the fascinating realm of additive manufactured SMAs, examining their complex fabrication processes, captivating internal structures, wide-ranging applications, and unique properties. It is remarkable to observe how the combination of metals, particularly nickel and titanium, creates the very essence of SMA's capabilities and various other material combination for novel SMAs. Additional insights are provided regarding how additive manufacturing parameters and appropriate post-treatments can enable these materials to accomplish extraordinary functionalities. These SMAs also possess the ability to recollect and move, demonstrating superelasticity and the capacity to regain their original shape in various capacities. However, there are promising prospects for the development of novel SMA mixtures, enhanced post-treatments methods, and even more intelligent and responsive products with dimensional accuracy and uniformity. This work presents insights on opportunities in industries for resilient materials, ranging from everyday devices to the immense expanse of space and the human body. Even with the advancements, there is still work to be done in continuously improving their design and pocket comfort. This review not only presents information but also envisions a future in which additive manufactured SMAs are central to advancements in engineering and other fields.