铜对激光焊接 TC4/Q345 高熵接头微观结构和性能的影响

Ben Liu, Zongtao Zhu, Yunqi Liu, Hongming Liu, Yuanxing Li, Hui Chen
{"title":"铜对激光焊接 TC4/Q345 高熵接头微观结构和性能的影响","authors":"Ben Liu, Zongtao Zhu, Yunqi Liu, Hongming Liu, Yuanxing Li, Hui Chen","doi":"10.1016/j.jmrt.2024.09.008","DOIUrl":null,"url":null,"abstract":"FeCoNiCrCu high-entropy alloy (HEA) and Cu foils were utilized as the intermediate layer to conduct laser welding of TC4 titanium alloy and Q345 steel. Welding is performed by adding single HEA and Cu/HEA double foils as interlayer respectively. We conducted in-depth studies on the microstructure and mechanical properties of the joint by stereomicroscopy, metallographic microscope, scanning electron microscope (SEM), micro-area X-ray diffraction (XRD), nanoindentation, electron backscatter diffraction (EBSD), and tensile testing. The results indicate that the position of the copper foil significantly affects the microstructure and performance of the joint. When the copper foil is on the TC4 side, its lower melting point causes a deeper keyhole, resulting in a narrower weld bead and then reduced content of Fe and Ti in the weld. Simultaneously, the increased proportion of Cu in the weld significantly enhances the content of Cu-rich phases. In the weld zone, we observed freely distributed Cu-rich phases and Ti-rich phases generated along the interface. Under tensile loads, cracks primarily initiate and propagate along the Cu-rich phases, leading to typical delamination on the fracture surface. With the copper foil on the TC4 side, due to the increased copper content in the microstructure, the hardness of the interface between the titanium alloy and the weld decreases, while the joint exhibits the highest tensile strength, reaching a maximum of 417 MPa.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of Cu on the microstructure and properties of TC4/Q345 high-entropy joints by laser welding\",\"authors\":\"Ben Liu, Zongtao Zhu, Yunqi Liu, Hongming Liu, Yuanxing Li, Hui Chen\",\"doi\":\"10.1016/j.jmrt.2024.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FeCoNiCrCu high-entropy alloy (HEA) and Cu foils were utilized as the intermediate layer to conduct laser welding of TC4 titanium alloy and Q345 steel. Welding is performed by adding single HEA and Cu/HEA double foils as interlayer respectively. We conducted in-depth studies on the microstructure and mechanical properties of the joint by stereomicroscopy, metallographic microscope, scanning electron microscope (SEM), micro-area X-ray diffraction (XRD), nanoindentation, electron backscatter diffraction (EBSD), and tensile testing. The results indicate that the position of the copper foil significantly affects the microstructure and performance of the joint. When the copper foil is on the TC4 side, its lower melting point causes a deeper keyhole, resulting in a narrower weld bead and then reduced content of Fe and Ti in the weld. Simultaneously, the increased proportion of Cu in the weld significantly enhances the content of Cu-rich phases. In the weld zone, we observed freely distributed Cu-rich phases and Ti-rich phases generated along the interface. Under tensile loads, cracks primarily initiate and propagate along the Cu-rich phases, leading to typical delamination on the fracture surface. With the copper foil on the TC4 side, due to the increased copper content in the microstructure, the hardness of the interface between the titanium alloy and the weld decreases, while the joint exhibits the highest tensile strength, reaching a maximum of 417 MPa.\",\"PeriodicalId\":501120,\"journal\":{\"name\":\"Journal of Materials Research and Technology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmrt.2024.09.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.09.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用铁钴镍铬铜高熵合金(HEA)和铜箔作为中间层,对 TC4 钛合金和 Q345 钢进行激光焊接。焊接分别以单层 HEA 和 Cu/HEA 双箔作为中间层进行。我们通过体视显微镜、金相显微镜、扫描电子显微镜(SEM)、微区 X 射线衍射(XRD)、纳米压痕、电子背散射衍射(EBSD)和拉伸试验对接头的微观结构和机械性能进行了深入研究。结果表明,铜箔的位置对接头的微观结构和性能有很大影响。当铜箔位于 TC4 侧时,其较低的熔点会造成较深的锁孔,导致焊缝较窄,进而降低焊缝中铁和钛的含量。与此同时,焊缝中铜的比例增加会显著提高富铜相的含量。在焊接区,我们观察到自由分布的富 Cu 相和沿界面生成的富 Ti- 相。在拉伸载荷作用下,裂纹主要沿着富铜相生成和扩展,从而在断裂表面形成典型的分层。当铜箔位于 TC4 侧时,由于微观结构中的铜含量增加,钛合金与焊缝之间的界面硬度降低,而接头的抗拉强度最高,最大可达 417 兆帕。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The influence of Cu on the microstructure and properties of TC4/Q345 high-entropy joints by laser welding
FeCoNiCrCu high-entropy alloy (HEA) and Cu foils were utilized as the intermediate layer to conduct laser welding of TC4 titanium alloy and Q345 steel. Welding is performed by adding single HEA and Cu/HEA double foils as interlayer respectively. We conducted in-depth studies on the microstructure and mechanical properties of the joint by stereomicroscopy, metallographic microscope, scanning electron microscope (SEM), micro-area X-ray diffraction (XRD), nanoindentation, electron backscatter diffraction (EBSD), and tensile testing. The results indicate that the position of the copper foil significantly affects the microstructure and performance of the joint. When the copper foil is on the TC4 side, its lower melting point causes a deeper keyhole, resulting in a narrower weld bead and then reduced content of Fe and Ti in the weld. Simultaneously, the increased proportion of Cu in the weld significantly enhances the content of Cu-rich phases. In the weld zone, we observed freely distributed Cu-rich phases and Ti-rich phases generated along the interface. Under tensile loads, cracks primarily initiate and propagate along the Cu-rich phases, leading to typical delamination on the fracture surface. With the copper foil on the TC4 side, due to the increased copper content in the microstructure, the hardness of the interface between the titanium alloy and the weld decreases, while the joint exhibits the highest tensile strength, reaching a maximum of 417 MPa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信