{"title":"铜对激光焊接 TC4/Q345 高熵接头微观结构和性能的影响","authors":"Ben Liu, Zongtao Zhu, Yunqi Liu, Hongming Liu, Yuanxing Li, Hui Chen","doi":"10.1016/j.jmrt.2024.09.008","DOIUrl":null,"url":null,"abstract":"FeCoNiCrCu high-entropy alloy (HEA) and Cu foils were utilized as the intermediate layer to conduct laser welding of TC4 titanium alloy and Q345 steel. Welding is performed by adding single HEA and Cu/HEA double foils as interlayer respectively. We conducted in-depth studies on the microstructure and mechanical properties of the joint by stereomicroscopy, metallographic microscope, scanning electron microscope (SEM), micro-area X-ray diffraction (XRD), nanoindentation, electron backscatter diffraction (EBSD), and tensile testing. The results indicate that the position of the copper foil significantly affects the microstructure and performance of the joint. When the copper foil is on the TC4 side, its lower melting point causes a deeper keyhole, resulting in a narrower weld bead and then reduced content of Fe and Ti in the weld. Simultaneously, the increased proportion of Cu in the weld significantly enhances the content of Cu-rich phases. In the weld zone, we observed freely distributed Cu-rich phases and Ti-rich phases generated along the interface. Under tensile loads, cracks primarily initiate and propagate along the Cu-rich phases, leading to typical delamination on the fracture surface. With the copper foil on the TC4 side, due to the increased copper content in the microstructure, the hardness of the interface between the titanium alloy and the weld decreases, while the joint exhibits the highest tensile strength, reaching a maximum of 417 MPa.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of Cu on the microstructure and properties of TC4/Q345 high-entropy joints by laser welding\",\"authors\":\"Ben Liu, Zongtao Zhu, Yunqi Liu, Hongming Liu, Yuanxing Li, Hui Chen\",\"doi\":\"10.1016/j.jmrt.2024.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FeCoNiCrCu high-entropy alloy (HEA) and Cu foils were utilized as the intermediate layer to conduct laser welding of TC4 titanium alloy and Q345 steel. Welding is performed by adding single HEA and Cu/HEA double foils as interlayer respectively. We conducted in-depth studies on the microstructure and mechanical properties of the joint by stereomicroscopy, metallographic microscope, scanning electron microscope (SEM), micro-area X-ray diffraction (XRD), nanoindentation, electron backscatter diffraction (EBSD), and tensile testing. The results indicate that the position of the copper foil significantly affects the microstructure and performance of the joint. When the copper foil is on the TC4 side, its lower melting point causes a deeper keyhole, resulting in a narrower weld bead and then reduced content of Fe and Ti in the weld. Simultaneously, the increased proportion of Cu in the weld significantly enhances the content of Cu-rich phases. In the weld zone, we observed freely distributed Cu-rich phases and Ti-rich phases generated along the interface. Under tensile loads, cracks primarily initiate and propagate along the Cu-rich phases, leading to typical delamination on the fracture surface. With the copper foil on the TC4 side, due to the increased copper content in the microstructure, the hardness of the interface between the titanium alloy and the weld decreases, while the joint exhibits the highest tensile strength, reaching a maximum of 417 MPa.\",\"PeriodicalId\":501120,\"journal\":{\"name\":\"Journal of Materials Research and Technology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmrt.2024.09.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.09.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
利用铁钴镍铬铜高熵合金(HEA)和铜箔作为中间层,对 TC4 钛合金和 Q345 钢进行激光焊接。焊接分别以单层 HEA 和 Cu/HEA 双箔作为中间层进行。我们通过体视显微镜、金相显微镜、扫描电子显微镜(SEM)、微区 X 射线衍射(XRD)、纳米压痕、电子背散射衍射(EBSD)和拉伸试验对接头的微观结构和机械性能进行了深入研究。结果表明,铜箔的位置对接头的微观结构和性能有很大影响。当铜箔位于 TC4 侧时,其较低的熔点会造成较深的锁孔,导致焊缝较窄,进而降低焊缝中铁和钛的含量。与此同时,焊缝中铜的比例增加会显著提高富铜相的含量。在焊接区,我们观察到自由分布的富 Cu 相和沿界面生成的富 Ti- 相。在拉伸载荷作用下,裂纹主要沿着富铜相生成和扩展,从而在断裂表面形成典型的分层。当铜箔位于 TC4 侧时,由于微观结构中的铜含量增加,钛合金与焊缝之间的界面硬度降低,而接头的抗拉强度最高,最大可达 417 兆帕。
The influence of Cu on the microstructure and properties of TC4/Q345 high-entropy joints by laser welding
FeCoNiCrCu high-entropy alloy (HEA) and Cu foils were utilized as the intermediate layer to conduct laser welding of TC4 titanium alloy and Q345 steel. Welding is performed by adding single HEA and Cu/HEA double foils as interlayer respectively. We conducted in-depth studies on the microstructure and mechanical properties of the joint by stereomicroscopy, metallographic microscope, scanning electron microscope (SEM), micro-area X-ray diffraction (XRD), nanoindentation, electron backscatter diffraction (EBSD), and tensile testing. The results indicate that the position of the copper foil significantly affects the microstructure and performance of the joint. When the copper foil is on the TC4 side, its lower melting point causes a deeper keyhole, resulting in a narrower weld bead and then reduced content of Fe and Ti in the weld. Simultaneously, the increased proportion of Cu in the weld significantly enhances the content of Cu-rich phases. In the weld zone, we observed freely distributed Cu-rich phases and Ti-rich phases generated along the interface. Under tensile loads, cracks primarily initiate and propagate along the Cu-rich phases, leading to typical delamination on the fracture surface. With the copper foil on the TC4 side, due to the increased copper content in the microstructure, the hardness of the interface between the titanium alloy and the weld decreases, while the joint exhibits the highest tensile strength, reaching a maximum of 417 MPa.