Ce Zhang, Xiangyang Liu, Langping Zhu, Xin Liu, Xianfei Ding, Rui Liu, Xin Lu
{"title":"瞬态液相(TLP)烧结修复的具有大面积孔缺陷的 Ti-6Al-4V 合金的显微结构和拉伸性能","authors":"Ce Zhang, Xiangyang Liu, Langping Zhu, Xin Liu, Xianfei Ding, Rui Liu, Xin Lu","doi":"10.1016/j.jmrt.2024.09.031","DOIUrl":null,"url":null,"abstract":"Repairing defects in titanium alloy components is economically justified due to their high cost. In this work, Ti–6Al–4V samples with large area hole defects are repaired by transient liquid-phase sintering. The microstructure and tensile properties after repair have been investigated. The factors of different base powder morphology and the ratio of braze metal are also studied. The results show that by using spherical Ti64 alloy powder with 40 wt% TiZrCuNi braze alloy powder, an overall repair effect with high-density repair zone and good interface combination can be obtained at 960 °C for 3 h. The tensile strength of the as-repaired exceeds that of the matrix, but the elongation is lower than that of the matrix. Finally, the repair experiment conducted at various angles demonstrates this technique's strong practical feasibility.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and tensile properties of transient liquid phase (TLP) sintering repaired Ti–6Al–4V alloys with large area hole defect\",\"authors\":\"Ce Zhang, Xiangyang Liu, Langping Zhu, Xin Liu, Xianfei Ding, Rui Liu, Xin Lu\",\"doi\":\"10.1016/j.jmrt.2024.09.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Repairing defects in titanium alloy components is economically justified due to their high cost. In this work, Ti–6Al–4V samples with large area hole defects are repaired by transient liquid-phase sintering. The microstructure and tensile properties after repair have been investigated. The factors of different base powder morphology and the ratio of braze metal are also studied. The results show that by using spherical Ti64 alloy powder with 40 wt% TiZrCuNi braze alloy powder, an overall repair effect with high-density repair zone and good interface combination can be obtained at 960 °C for 3 h. The tensile strength of the as-repaired exceeds that of the matrix, but the elongation is lower than that of the matrix. Finally, the repair experiment conducted at various angles demonstrates this technique's strong practical feasibility.\",\"PeriodicalId\":501120,\"journal\":{\"name\":\"Journal of Materials Research and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmrt.2024.09.031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.09.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由于钛合金部件的成本较高,对其缺陷进行修复在经济上是合理的。在这项工作中,通过瞬态液相烧结修复了具有大面积孔洞缺陷的 Ti-6Al-4V 样品。研究了修复后的微观结构和拉伸性能。同时还研究了不同基体粉末形态和钎焊金属比例的因素。结果表明,通过使用球形 Ti64 合金粉末与 40 wt% TiZrCuNi 钎焊合金粉末,在 960 °C 3 h 的条件下可获得具有高密度修复区和良好界面结合的整体修复效果,修复后的拉伸强度超过基体,但伸长率低于基体。最后,在不同角度进行的修复实验证明了该技术具有很强的实用性。
Microstructure and tensile properties of transient liquid phase (TLP) sintering repaired Ti–6Al–4V alloys with large area hole defect
Repairing defects in titanium alloy components is economically justified due to their high cost. In this work, Ti–6Al–4V samples with large area hole defects are repaired by transient liquid-phase sintering. The microstructure and tensile properties after repair have been investigated. The factors of different base powder morphology and the ratio of braze metal are also studied. The results show that by using spherical Ti64 alloy powder with 40 wt% TiZrCuNi braze alloy powder, an overall repair effect with high-density repair zone and good interface combination can be obtained at 960 °C for 3 h. The tensile strength of the as-repaired exceeds that of the matrix, but the elongation is lower than that of the matrix. Finally, the repair experiment conducted at various angles demonstrates this technique's strong practical feasibility.