锆酸盐/钽酸盐双相高熵陶瓷提高了隔热涂层材料的热性能和断裂韧性

Jiankun Wang, Lin Chen, Gang Wang, Shixian Zhao, Bo Yuan, Hongxia Li, Xunlei Chen, Baihui Li, Luyang Zhang, Jing Feng
{"title":"锆酸盐/钽酸盐双相高熵陶瓷提高了隔热涂层材料的热性能和断裂韧性","authors":"Jiankun Wang, Lin Chen, Gang Wang, Shixian Zhao, Bo Yuan, Hongxia Li, Xunlei Chen, Baihui Li, Luyang Zhang, Jing Feng","doi":"10.1016/j.jmrt.2024.08.187","DOIUrl":null,"url":null,"abstract":"Working temperatures, thermal insulation performance, and life span of thermal barrier coatings (TBCs) are primarily influenced by their high-temperature stability, thermal expansion coefficients (TECs), thermal conductivity, and fracture toughness. To address the limitations of current zirconate- and tantalate-based oxides, dual-phase zirconate/tantalate high-entropy ceramics (HECs) are designed and synthesized to improve their thermal and mechanical properties. The combined effects of high entropy, high concentrations of oxygen vacancies, and relatively low phonon velocity result in glass-like thermal conductivity, with a minimum value of 1.55 W m K at 1200 °C. The high TECs (10.6–10.9 × 10 K at 1400 °C) and exceptional high-temperature stability demonstrate that these materials can withstand 1300 °C for more than 300 h, significantly surpassing the performance of traditional yttria-stabilized zirconia (YSZ). Compared with YSZ (3.6 MPa m) and YTaO (2.5 MPa m), the increments in fracture toughness (4.4 MPa m) of dual-phase zirconate/tantalate HECs are as high as 22.2% and 76.0%, respectively. It is evident that the designed dual-phase zirconate/tantalate HECs can effectively promote thermal properties and fracture toughness, positioning them as the next-generation TBCs with high operating temperatures and outstanding thermal insulation performance.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-phase zirconate/tantalate high-entropy ceramics boost thermal properties and fracture toughness for thermal barrier coating materials\",\"authors\":\"Jiankun Wang, Lin Chen, Gang Wang, Shixian Zhao, Bo Yuan, Hongxia Li, Xunlei Chen, Baihui Li, Luyang Zhang, Jing Feng\",\"doi\":\"10.1016/j.jmrt.2024.08.187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Working temperatures, thermal insulation performance, and life span of thermal barrier coatings (TBCs) are primarily influenced by their high-temperature stability, thermal expansion coefficients (TECs), thermal conductivity, and fracture toughness. To address the limitations of current zirconate- and tantalate-based oxides, dual-phase zirconate/tantalate high-entropy ceramics (HECs) are designed and synthesized to improve their thermal and mechanical properties. The combined effects of high entropy, high concentrations of oxygen vacancies, and relatively low phonon velocity result in glass-like thermal conductivity, with a minimum value of 1.55 W m K at 1200 °C. The high TECs (10.6–10.9 × 10 K at 1400 °C) and exceptional high-temperature stability demonstrate that these materials can withstand 1300 °C for more than 300 h, significantly surpassing the performance of traditional yttria-stabilized zirconia (YSZ). Compared with YSZ (3.6 MPa m) and YTaO (2.5 MPa m), the increments in fracture toughness (4.4 MPa m) of dual-phase zirconate/tantalate HECs are as high as 22.2% and 76.0%, respectively. It is evident that the designed dual-phase zirconate/tantalate HECs can effectively promote thermal properties and fracture toughness, positioning them as the next-generation TBCs with high operating temperatures and outstanding thermal insulation performance.\",\"PeriodicalId\":501120,\"journal\":{\"name\":\"Journal of Materials Research and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmrt.2024.08.187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.08.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

隔热涂层(TBC)的工作温度、隔热性能和使用寿命主要受其高温稳定性、热膨胀系数(TEC)、热导率和断裂韧性的影响。为了解决目前以锆酸盐和钽酸盐为基础的氧化物的局限性,设计并合成了双相锆酸盐/钽酸盐高熵陶瓷 (HEC),以改善它们的热性能和机械性能。在高熵、高浓度氧空位和相对较低的声子速度的共同作用下,产生了类似玻璃的热导率,在 1200 °C 时的最低值为 1.55 W m K。高热电导率(1400 ℃ 时为 10.6-10.9 × 10 K)和优异的高温稳定性表明,这些材料可在 1300 ℃ 下工作 300 小时以上,大大超过了传统的钇稳定氧化锆(YSZ)。与 YSZ(3.6 MPa m)和 YTaO(2.5 MPa m)相比,双相锆酸盐/钽酸盐 HEC 的断裂韧性(4.4 MPa m)分别提高了 22.2% 和 76.0%。由此可见,所设计的锆酸盐/钽酸盐双相 HEC 可有效提高热性能和断裂韧性,使其成为具有较高工作温度和出色隔热性能的下一代 TBC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-phase zirconate/tantalate high-entropy ceramics boost thermal properties and fracture toughness for thermal barrier coating materials
Working temperatures, thermal insulation performance, and life span of thermal barrier coatings (TBCs) are primarily influenced by their high-temperature stability, thermal expansion coefficients (TECs), thermal conductivity, and fracture toughness. To address the limitations of current zirconate- and tantalate-based oxides, dual-phase zirconate/tantalate high-entropy ceramics (HECs) are designed and synthesized to improve their thermal and mechanical properties. The combined effects of high entropy, high concentrations of oxygen vacancies, and relatively low phonon velocity result in glass-like thermal conductivity, with a minimum value of 1.55 W m K at 1200 °C. The high TECs (10.6–10.9 × 10 K at 1400 °C) and exceptional high-temperature stability demonstrate that these materials can withstand 1300 °C for more than 300 h, significantly surpassing the performance of traditional yttria-stabilized zirconia (YSZ). Compared with YSZ (3.6 MPa m) and YTaO (2.5 MPa m), the increments in fracture toughness (4.4 MPa m) of dual-phase zirconate/tantalate HECs are as high as 22.2% and 76.0%, respectively. It is evident that the designed dual-phase zirconate/tantalate HECs can effectively promote thermal properties and fracture toughness, positioning them as the next-generation TBCs with high operating temperatures and outstanding thermal insulation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信