使用续指数和香克斯变换的与扰动方法有关的发散序列的收敛性

Venkat Abhignan
{"title":"使用续指数和香克斯变换的与扰动方法有关的发散序列的收敛性","authors":"Venkat Abhignan","doi":"arxiv-2409.05438","DOIUrl":null,"url":null,"abstract":"Divergent solutions are ubiquitous with perturbation methods. We use\ncontinued function such as continued exponential to converge divergent series\nin perturbation approaches for energy eigenvalues of Helium, Stark effect and\nZeeman effect on Hydrogen. We observe that convergence properties are obtained\nsimilar to that of the Pad\\'e approximation which is extensively used in\nliterature. Free parameters are not used which influence the convergence and\nonly first few terms in the perturbation series are implemented.","PeriodicalId":501565,"journal":{"name":"arXiv - PHYS - Physics Education","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence in divergent series related to perturbation methods using continued exponential and Shanks transformations\",\"authors\":\"Venkat Abhignan\",\"doi\":\"arxiv-2409.05438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Divergent solutions are ubiquitous with perturbation methods. We use\\ncontinued function such as continued exponential to converge divergent series\\nin perturbation approaches for energy eigenvalues of Helium, Stark effect and\\nZeeman effect on Hydrogen. We observe that convergence properties are obtained\\nsimilar to that of the Pad\\\\'e approximation which is extensively used in\\nliterature. Free parameters are not used which influence the convergence and\\nonly first few terms in the perturbation series are implemented.\",\"PeriodicalId\":501565,\"journal\":{\"name\":\"arXiv - PHYS - Physics Education\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Physics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发散解在扰动方法中无处不在。我们利用续函数(如续指数)来收敛扰动方法中的发散序列,用于氦的能量特征值、斯塔克效应和氢的泽曼效应。我们观察到所获得的收敛特性与文献中广泛使用的 Pad\'e 近似相似。我们没有使用影响收敛性的自由参数,而且只实现了扰动序列中的前几项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence in divergent series related to perturbation methods using continued exponential and Shanks transformations
Divergent solutions are ubiquitous with perturbation methods. We use continued function such as continued exponential to converge divergent series in perturbation approaches for energy eigenvalues of Helium, Stark effect and Zeeman effect on Hydrogen. We observe that convergence properties are obtained similar to that of the Pad\'e approximation which is extensively used in literature. Free parameters are not used which influence the convergence and only first few terms in the perturbation series are implemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信