Elena Moltchanova, Miguel Moyers-González, Geertrui Van de Voorde, José Felipe Voloch, Philipp Wacker
{"title":"如何利用概率论在乌贼游戏中生存下来","authors":"Elena Moltchanova, Miguel Moyers-González, Geertrui Van de Voorde, José Felipe Voloch, Philipp Wacker","doi":"arxiv-2409.05263","DOIUrl":null,"url":null,"abstract":"In this paper, we consider how probability theory can be used to determine\nthe survival strategy in two of the ``Squid Game\" and ``Squid Game: The\nChallenge\" challenges: the Hopscotch and the Warships. We show how Hopscotch\ncan be easily tackled with the knowledge of the binomial distribution, taught\nin introductory statistics courses, while Warships is a much more complex\nproblem, which can be tackled at different levels.","PeriodicalId":501323,"journal":{"name":"arXiv - STAT - Other Statistics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to survive the Squid Games using probability theory\",\"authors\":\"Elena Moltchanova, Miguel Moyers-González, Geertrui Van de Voorde, José Felipe Voloch, Philipp Wacker\",\"doi\":\"arxiv-2409.05263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider how probability theory can be used to determine\\nthe survival strategy in two of the ``Squid Game\\\" and ``Squid Game: The\\nChallenge\\\" challenges: the Hopscotch and the Warships. We show how Hopscotch\\ncan be easily tackled with the knowledge of the binomial distribution, taught\\nin introductory statistics courses, while Warships is a much more complex\\nproblem, which can be tackled at different levels.\",\"PeriodicalId\":501323,\"journal\":{\"name\":\"arXiv - STAT - Other Statistics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Other Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Other Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How to survive the Squid Games using probability theory
In this paper, we consider how probability theory can be used to determine
the survival strategy in two of the ``Squid Game" and ``Squid Game: The
Challenge" challenges: the Hopscotch and the Warships. We show how Hopscotch
can be easily tackled with the knowledge of the binomial distribution, taught
in introductory statistics courses, while Warships is a much more complex
problem, which can be tackled at different levels.