接收函数揭示的中国辽东半岛乌龙金矿区深部结构:对构造和成矿动力学的影响

IF 2 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Fan Zheng, Tao Xu, Yinshuang Ai, Yunping Ge, Qingdong Zeng, Laicheng Miao, Weiyu Dong, José Badal
{"title":"接收函数揭示的中国辽东半岛乌龙金矿区深部结构:对构造和成矿动力学的影响","authors":"Fan Zheng, Tao Xu, Yinshuang Ai, Yunping Ge, Qingdong Zeng, Laicheng Miao, Weiyu Dong, José Badal","doi":"10.3389/feart.2024.1437605","DOIUrl":null,"url":null,"abstract":"During the Mesozoic, the North China Craton experienced intense tectonic movements that resulted in the formation of numerous gold deposits on the Liaodong and Jiaodong Peninsulas in northeastern China. To investigate the relationship between deep crustal structure and gold mineralization in the Liaodong Peninsula, we deployed 334 dense seismic stations in the Wulong goldfield (WLGF) with the idea of analysing numerous receiver functions at different array stations. The purpose focused on knowing the potential for gold mineralization in the area. The study revealed the following: (1) The WLGF is characterized by a crustal thickness of approximately 32 km and an average Vp/Vs ratio of 1.76. The high value of the Vp/Vs ratio near the Wulong gold deposit suggests that mantle materials have penetrated into the crust and contributed to the mineralization process. (2) A low-velocity layer located at a depth of 10–18 km below the WLGF seems to support the existence of a potentially brittle-ductile transition zone. Also, hydrothermal magma upwelling channels are observed in the upper crust beneath the Wulong gold deposit. (3) The presence of a discontinuous low-velocity layer in the middle crust beneath the Liaodong Peninsula suggests promising prospects for gold ore exploration. The receiver functions method based on a dense seismic array employed in this study can offer valuable references and guidance for the fine exploration and research of ore deposits in other regions globally.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"39 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep structure of the Wulong goldfield, Liaodong Peninsula, China, revealed by receiver functions: implications for the tectonic and mineralization dynamics\",\"authors\":\"Fan Zheng, Tao Xu, Yinshuang Ai, Yunping Ge, Qingdong Zeng, Laicheng Miao, Weiyu Dong, José Badal\",\"doi\":\"10.3389/feart.2024.1437605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the Mesozoic, the North China Craton experienced intense tectonic movements that resulted in the formation of numerous gold deposits on the Liaodong and Jiaodong Peninsulas in northeastern China. To investigate the relationship between deep crustal structure and gold mineralization in the Liaodong Peninsula, we deployed 334 dense seismic stations in the Wulong goldfield (WLGF) with the idea of analysing numerous receiver functions at different array stations. The purpose focused on knowing the potential for gold mineralization in the area. The study revealed the following: (1) The WLGF is characterized by a crustal thickness of approximately 32 km and an average Vp/Vs ratio of 1.76. The high value of the Vp/Vs ratio near the Wulong gold deposit suggests that mantle materials have penetrated into the crust and contributed to the mineralization process. (2) A low-velocity layer located at a depth of 10–18 km below the WLGF seems to support the existence of a potentially brittle-ductile transition zone. Also, hydrothermal magma upwelling channels are observed in the upper crust beneath the Wulong gold deposit. (3) The presence of a discontinuous low-velocity layer in the middle crust beneath the Liaodong Peninsula suggests promising prospects for gold ore exploration. The receiver functions method based on a dense seismic array employed in this study can offer valuable references and guidance for the fine exploration and research of ore deposits in other regions globally.\",\"PeriodicalId\":12359,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2024.1437605\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1437605","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

中生代时期,华北克拉通经历了强烈的构造运动,在中国东北的辽东半岛和胶东半岛形成了大量金矿床。为了研究辽东半岛深部地壳结构与金矿成矿之间的关系,我们在乌龙金矿区(WLGF)布设了 334 个密集地震台站,目的是分析不同阵列台站的众多接收函数。目的主要是了解该地区金矿化的潜力。研究结果表明(1) WLGF 的地壳厚度约为 32 千米,平均 Vp/Vs 比值为 1.76。武隆金矿床附近的 Vp/Vs 比值较高,表明地幔物质已渗入地壳,并促进了成矿过程。(2) 位于武隆金矿床下10-18千米深处的低速层似乎支持潜在脆-韧性过渡带的存在。此外,在武隆金矿床下方的上地壳中还观察到热液岩浆上涌通道。(3) 辽东半岛下的中地壳存在不连续的低速层,表明金矿勘探前景广阔。本研究采用的基于密集地震阵列的接收函数方法,可为全球其他地区的矿床精细勘探和研究提供有价值的参考和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep structure of the Wulong goldfield, Liaodong Peninsula, China, revealed by receiver functions: implications for the tectonic and mineralization dynamics
During the Mesozoic, the North China Craton experienced intense tectonic movements that resulted in the formation of numerous gold deposits on the Liaodong and Jiaodong Peninsulas in northeastern China. To investigate the relationship between deep crustal structure and gold mineralization in the Liaodong Peninsula, we deployed 334 dense seismic stations in the Wulong goldfield (WLGF) with the idea of analysing numerous receiver functions at different array stations. The purpose focused on knowing the potential for gold mineralization in the area. The study revealed the following: (1) The WLGF is characterized by a crustal thickness of approximately 32 km and an average Vp/Vs ratio of 1.76. The high value of the Vp/Vs ratio near the Wulong gold deposit suggests that mantle materials have penetrated into the crust and contributed to the mineralization process. (2) A low-velocity layer located at a depth of 10–18 km below the WLGF seems to support the existence of a potentially brittle-ductile transition zone. Also, hydrothermal magma upwelling channels are observed in the upper crust beneath the Wulong gold deposit. (3) The presence of a discontinuous low-velocity layer in the middle crust beneath the Liaodong Peninsula suggests promising prospects for gold ore exploration. The receiver functions method based on a dense seismic array employed in this study can offer valuable references and guidance for the fine exploration and research of ore deposits in other regions globally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Earth Science
Frontiers in Earth Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
3.50
自引率
10.30%
发文量
2076
审稿时长
12 weeks
期刊介绍: Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet. This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet. The journal welcomes outstanding contributions in any domain of Earth Science. The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission. General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信