在单调语义的程序合成问题自顶向下枚举中自动剪枝

Keith J. C. Johnson, Rahul Krishnan, Thomas Reps, Loris D'Antoni
{"title":"在单调语义的程序合成问题自顶向下枚举中自动剪枝","authors":"Keith J. C. Johnson, Rahul Krishnan, Thomas Reps, Loris D'Antoni","doi":"arxiv-2408.15822","DOIUrl":null,"url":null,"abstract":"In top-down enumeration for program synthesis, abstraction-based pruning uses\nan abstract domain to approximate the set of possible values that a partial\nprogram, when completed, can output on a given input. If the set does not\ncontain the desired output, the partial program and all its possible\ncompletions can be pruned. In its general form, abstraction-based pruning\nrequires manually designed, domain-specific abstract domains and semantics, and\nthus has only been used in domain-specific synthesizers. This paper provides sufficient conditions under which a form of\nabstraction-based pruning can be automated for arbitrary synthesis problems in\nthe general-purpose Semantics-Guided Synthesis (SemGuS) framework without\nrequiring manually-defined abstract domains. We show that if the semantics of\nthe language for which we are synthesizing programs exhibits some monotonicity\nproperties, one can obtain an abstract interval-based semantics for free from\nthe concrete semantics of the programming language, and use such semantics to\neffectively prune the search space. We also identify a condition that ensures\nsuch abstract semantics can be used to compute a precise abstraction of the set\nof values that a program derivable from a given hole in a partial program can\nproduce. These precise abstractions make abstraction-based pruning more\neffective. We implement our approach in a tool, Moito, which can tackle synthesis\nproblems defined in the SemGuS framework. Moito can automate interval-based\npruning without any a-priori knowledge of the problem domain, and solve\nsynthesis problems that previously required domain-specific, abstraction-based\nsynthesizers -- e.g., synthesis of regular expressions, CSV file schema, and\nimperative programs from examples.","PeriodicalId":501197,"journal":{"name":"arXiv - CS - Programming Languages","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automating Pruning in Top-Down Enumeration for Program Synthesis Problems with Monotonic Semantics\",\"authors\":\"Keith J. C. Johnson, Rahul Krishnan, Thomas Reps, Loris D'Antoni\",\"doi\":\"arxiv-2408.15822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In top-down enumeration for program synthesis, abstraction-based pruning uses\\nan abstract domain to approximate the set of possible values that a partial\\nprogram, when completed, can output on a given input. If the set does not\\ncontain the desired output, the partial program and all its possible\\ncompletions can be pruned. In its general form, abstraction-based pruning\\nrequires manually designed, domain-specific abstract domains and semantics, and\\nthus has only been used in domain-specific synthesizers. This paper provides sufficient conditions under which a form of\\nabstraction-based pruning can be automated for arbitrary synthesis problems in\\nthe general-purpose Semantics-Guided Synthesis (SemGuS) framework without\\nrequiring manually-defined abstract domains. We show that if the semantics of\\nthe language for which we are synthesizing programs exhibits some monotonicity\\nproperties, one can obtain an abstract interval-based semantics for free from\\nthe concrete semantics of the programming language, and use such semantics to\\neffectively prune the search space. We also identify a condition that ensures\\nsuch abstract semantics can be used to compute a precise abstraction of the set\\nof values that a program derivable from a given hole in a partial program can\\nproduce. These precise abstractions make abstraction-based pruning more\\neffective. We implement our approach in a tool, Moito, which can tackle synthesis\\nproblems defined in the SemGuS framework. Moito can automate interval-based\\npruning without any a-priori knowledge of the problem domain, and solve\\nsynthesis problems that previously required domain-specific, abstraction-based\\nsynthesizers -- e.g., synthesis of regular expressions, CSV file schema, and\\nimperative programs from examples.\",\"PeriodicalId\":501197,\"journal\":{\"name\":\"arXiv - CS - Programming Languages\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在用于程序综合的自顶向下枚举中,基于抽象的剪枝使用一个抽象域来近似估计部分程序在完成后可在给定输入上输出的可能值集合。如果该集合不包含所需的输出,则可以剪枝该部分程序及其所有可能的完成。一般来说,基于抽象的剪枝需要人工设计特定领域的抽象域和语义,因此只在特定领域的合成器中使用过。本文提供了充分条件,在这些条件下,通用语义引导合成(Semantics-Guided Synthesis,SemGuS)框架中的任意合成问题都可以自动实现基于抽象的剪枝,而无需人工定义抽象域。我们的研究表明,如果我们正在合成程序的语言的语义表现出某些单调性特性,我们就可以从编程语言的具体语义中免费获得基于区间的抽象语义,并利用这种语义有效地剪裁搜索空间。我们还确定了一个条件,确保抽象语义可用于计算部分程序中给定洞可派生程序所能产生的值集的精确抽象。这些精确的抽象使得基于抽象的剪枝更加有效。我们在工具 Moito 中实现了我们的方法,它可以处理 SemGuS 框架中定义的综合问题。Moito 可以自动进行基于区间的剪枝,而不需要任何关于问题领域的先验知识,并且可以解决以前需要特定领域、基于抽象的合成器才能解决的合成问题--例如,正则表达式、CSV 文件模式和示例中的交互式程序的合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automating Pruning in Top-Down Enumeration for Program Synthesis Problems with Monotonic Semantics
In top-down enumeration for program synthesis, abstraction-based pruning uses an abstract domain to approximate the set of possible values that a partial program, when completed, can output on a given input. If the set does not contain the desired output, the partial program and all its possible completions can be pruned. In its general form, abstraction-based pruning requires manually designed, domain-specific abstract domains and semantics, and thus has only been used in domain-specific synthesizers. This paper provides sufficient conditions under which a form of abstraction-based pruning can be automated for arbitrary synthesis problems in the general-purpose Semantics-Guided Synthesis (SemGuS) framework without requiring manually-defined abstract domains. We show that if the semantics of the language for which we are synthesizing programs exhibits some monotonicity properties, one can obtain an abstract interval-based semantics for free from the concrete semantics of the programming language, and use such semantics to effectively prune the search space. We also identify a condition that ensures such abstract semantics can be used to compute a precise abstraction of the set of values that a program derivable from a given hole in a partial program can produce. These precise abstractions make abstraction-based pruning more effective. We implement our approach in a tool, Moito, which can tackle synthesis problems defined in the SemGuS framework. Moito can automate interval-based pruning without any a-priori knowledge of the problem domain, and solve synthesis problems that previously required domain-specific, abstraction-based synthesizers -- e.g., synthesis of regular expressions, CSV file schema, and imperative programs from examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信