冲击损坏的多孔碳化硅陶瓷中微裂纹的时间模式

IF 0.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED
I. P. Shcherbakov, A. G. Kadomtsev, A. E. Chmel
{"title":"冲击损坏的多孔碳化硅陶瓷中微裂纹的时间模式","authors":"I. P. Shcherbakov, A. G. Kadomtsev, A. E. Chmel","doi":"10.1134/s1063785023170212","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—Temporal characteristics of the localized damage development initiated by a short-time impact pointed loading of SiC ceramics which is widely applied as a protective material against the shock action upon engineering constructions and people were investigated. The statistics of crack nucleation and relaxation was studied with the methods of acoustic emission and electromagnetic emission, correspondingly. It was shown that the length of intervals between microcrack nucleations follows a power law specific to cooperative phenomena. The time distribution of decaying electric charges which appear on impact-induced crack edges and annihilate after the passage of impact wave was, in contrast, linear. The temporal pattern of the crack relaxation permitted identifying two sets of newly formed damages that are the tiny cracks localized in the grain bulk and those that interconnect grains.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":"7 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal Pattern of Microcracking in Impact–Damaged Porous SiC Ceramics\",\"authors\":\"I. P. Shcherbakov, A. G. Kadomtsev, A. E. Chmel\",\"doi\":\"10.1134/s1063785023170212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—Temporal characteristics of the localized damage development initiated by a short-time impact pointed loading of SiC ceramics which is widely applied as a protective material against the shock action upon engineering constructions and people were investigated. The statistics of crack nucleation and relaxation was studied with the methods of acoustic emission and electromagnetic emission, correspondingly. It was shown that the length of intervals between microcrack nucleations follows a power law specific to cooperative phenomena. The time distribution of decaying electric charges which appear on impact-induced crack edges and annihilate after the passage of impact wave was, in contrast, linear. The temporal pattern of the crack relaxation permitted identifying two sets of newly formed damages that are the tiny cracks localized in the grain bulk and those that interconnect grains.</p>\",\"PeriodicalId\":784,\"journal\":{\"name\":\"Technical Physics Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063785023170212\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023170212","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要-SiC 陶瓷是一种广泛应用于工程建筑和人体的抗冲击保护材料,本文研究了 SiC 陶瓷在短时间冲击尖角加载下局部损伤发展的时间特征。相应地,采用声发射和电磁发射方法研究了裂纹成核和松弛的统计数据。结果表明,微裂纹成核之间的间隔长度遵循合作现象特有的幂律。相反,冲击引起的裂纹边缘出现的衰减电荷在冲击波通过后湮灭的时间分布是线性的。裂纹弛豫的时间模式允许识别两组新形成的损伤,即晶粒体中的局部微小裂纹和晶粒之间的连接裂纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Temporal Pattern of Microcracking in Impact–Damaged Porous SiC Ceramics

Temporal Pattern of Microcracking in Impact–Damaged Porous SiC Ceramics

Abstract—Temporal characteristics of the localized damage development initiated by a short-time impact pointed loading of SiC ceramics which is widely applied as a protective material against the shock action upon engineering constructions and people were investigated. The statistics of crack nucleation and relaxation was studied with the methods of acoustic emission and electromagnetic emission, correspondingly. It was shown that the length of intervals between microcrack nucleations follows a power law specific to cooperative phenomena. The time distribution of decaying electric charges which appear on impact-induced crack edges and annihilate after the passage of impact wave was, in contrast, linear. The temporal pattern of the crack relaxation permitted identifying two sets of newly formed damages that are the tiny cracks localized in the grain bulk and those that interconnect grains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technical Physics Letters
Technical Physics Letters 物理-物理:应用
CiteScore
1.50
自引率
0.00%
发文量
44
审稿时长
2-4 weeks
期刊介绍: Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信