具有 -R 耦合的六方晶格的光谱特性

Pavel Exner, Jan Pekař
{"title":"具有 -R 耦合的六方晶格的光谱特性","authors":"Pavel Exner, Jan Pekař","doi":"arxiv-2409.03538","DOIUrl":null,"url":null,"abstract":"We analyze the spectrum of the hexagonal lattice graph with a vertex coupling\nwhich manifestly violates the time reversal invariance and at high energies it\nasymptotically decouples edges at even degree vertices; a comparison is made to\nthe case when such a decoupling occurs at odd degree vertices. We also show\nthat the spectral character does not change if the equilateral elementary cell\nof the lattice is dilated to have three different edge lengths, except that\nflat bands are absent if those are incommensurate.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral properties of hexagonal lattices with the -R coupling\",\"authors\":\"Pavel Exner, Jan Pekař\",\"doi\":\"arxiv-2409.03538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the spectrum of the hexagonal lattice graph with a vertex coupling\\nwhich manifestly violates the time reversal invariance and at high energies it\\nasymptotically decouples edges at even degree vertices; a comparison is made to\\nthe case when such a decoupling occurs at odd degree vertices. We also show\\nthat the spectral character does not change if the equilateral elementary cell\\nof the lattice is dilated to have three different edge lengths, except that\\nflat bands are absent if those are incommensurate.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了六边形晶格图的频谱,其顶点耦合明显违反了时间反转不变性,在高能量下,偶数度顶点的边会近似去耦合;与奇数度顶点去耦合的情况进行了比较。我们还证明,如果把晶格的等边基本蜂窝扩大到有三个不同的边长,其光谱特性不会改变,只是如果这些边长不相称,就不会出现扁带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral properties of hexagonal lattices with the -R coupling
We analyze the spectrum of the hexagonal lattice graph with a vertex coupling which manifestly violates the time reversal invariance and at high energies it asymptotically decouples edges at even degree vertices; a comparison is made to the case when such a decoupling occurs at odd degree vertices. We also show that the spectral character does not change if the equilateral elementary cell of the lattice is dilated to have three different edge lengths, except that flat bands are absent if those are incommensurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信