具有小 Dirichet 区域的混合特征值问题的热点定理

Lawford Hatcher
{"title":"具有小 Dirichet 区域的混合特征值问题的热点定理","authors":"Lawford Hatcher","doi":"arxiv-2409.03908","DOIUrl":null,"url":null,"abstract":"We prove that on convex domains, first mixed Laplace eigenfunctions have no\ninterior critical points if the Dirichlet region is connected and sufficiently\nsmall. We use this result to construct a new family of polygonal domains for\nwhich Rauch's hot spots conjecture holds and to prove a new general theorem\nregarding the hot spots conjecture.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hot spots theorem for the mixed eigenvalue problem with small Dirichet region\",\"authors\":\"Lawford Hatcher\",\"doi\":\"arxiv-2409.03908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that on convex domains, first mixed Laplace eigenfunctions have no\\ninterior critical points if the Dirichlet region is connected and sufficiently\\nsmall. We use this result to construct a new family of polygonal domains for\\nwhich Rauch's hot spots conjecture holds and to prove a new general theorem\\nregarding the hot spots conjecture.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在凸域上,如果 Dirichlet 区域连通且足够小,则第一混合拉普拉斯特征函数没有内部临界点。我们利用这一结果构造了一个新的多边形域族,对这些域,Rauch 的热点猜想成立,并证明了一个关于热点猜想的新的一般定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hot spots theorem for the mixed eigenvalue problem with small Dirichet region
We prove that on convex domains, first mixed Laplace eigenfunctions have no interior critical points if the Dirichlet region is connected and sufficiently small. We use this result to construct a new family of polygonal domains for which Rauch's hot spots conjecture holds and to prove a new general theorem regarding the hot spots conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信