有边界紧凑流形上薛定谔算子的韦尔定律

Xiaoqi Huang, Xing Wang, Cheng Zhang
{"title":"有边界紧凑流形上薛定谔算子的韦尔定律","authors":"Xiaoqi Huang, Xing Wang, Cheng Zhang","doi":"arxiv-2409.05252","DOIUrl":null,"url":null,"abstract":"We prove Weyl laws for Schr\\\"odinger operators with critically singular\npotentials on compact manifolds with boundary. We also improve the Weyl\nremainder estimates under the condition that the set of all periodic geodesic\nbilliards has measure 0. These extend the classical results by Seeley, Ivrii\nand Melrose. The proof uses the Gaussian heat kernel bounds for short times and\na perturbation argument involving the wave equation.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weyl laws for Schrödinger operators on compact manifolds with boundary\",\"authors\":\"Xiaoqi Huang, Xing Wang, Cheng Zhang\",\"doi\":\"arxiv-2409.05252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove Weyl laws for Schr\\\\\\\"odinger operators with critically singular\\npotentials on compact manifolds with boundary. We also improve the Weyl\\nremainder estimates under the condition that the set of all periodic geodesic\\nbilliards has measure 0. These extend the classical results by Seeley, Ivrii\\nand Melrose. The proof uses the Gaussian heat kernel bounds for short times and\\na perturbation argument involving the wave equation.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在有边界的紧凑流形上具有临界奇异势的薛定谔算子的韦尔定律。我们还改进了在所有周期性大地台球集合的度量为 0 的条件下的韦尔残差估计。证明使用了短时间的高斯热核边界和涉及波方程的扰动论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weyl laws for Schrödinger operators on compact manifolds with boundary
We prove Weyl laws for Schr\"odinger operators with critically singular potentials on compact manifolds with boundary. We also improve the Weyl remainder estimates under the condition that the set of all periodic geodesic billiards has measure 0. These extend the classical results by Seeley, Ivrii and Melrose. The proof uses the Gaussian heat kernel bounds for short times and a perturbation argument involving the wave equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信