关于退化黎曼曲面上的狄拉克谱

Cipriana Anghel
{"title":"关于退化黎曼曲面上的狄拉克谱","authors":"Cipriana Anghel","doi":"arxiv-2409.05616","DOIUrl":null,"url":null,"abstract":"We study the behavior of the spectrum of the Dirac operator on degenerating\nfamilies of compact Riemannian surfaces, when the length $t$ of a simple closed\ngeodesic shrinks to zero, under the hypothesis that the spin structure along\nthe pinched geodesic is non-trivial. The difficulty of the problem stems from\nthe non-compactness of the limit surface, which has finite area and two cusps.\nThe main idea in this investigation is to construct an adapted\npseudodifferential calculus, in the spirit of the celebrated b-algebra of\nMelrose, which includes both the family of Dirac operators on the family of\ncompact surfaces and the Dirac operator on the limit non-compact surface,\ntogether with their resolvents. We obtain smoothness of the spectral\nprojectors, and $t^2 \\log t$ regularity for the cusp-surgery trace of the\nrelative resolvent in the degeneracy process as $t \\searrow 0$.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Dirac spectrum on degenerating Riemannian surfaces\",\"authors\":\"Cipriana Anghel\",\"doi\":\"arxiv-2409.05616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the behavior of the spectrum of the Dirac operator on degenerating\\nfamilies of compact Riemannian surfaces, when the length $t$ of a simple closed\\ngeodesic shrinks to zero, under the hypothesis that the spin structure along\\nthe pinched geodesic is non-trivial. The difficulty of the problem stems from\\nthe non-compactness of the limit surface, which has finite area and two cusps.\\nThe main idea in this investigation is to construct an adapted\\npseudodifferential calculus, in the spirit of the celebrated b-algebra of\\nMelrose, which includes both the family of Dirac operators on the family of\\ncompact surfaces and the Dirac operator on the limit non-compact surface,\\ntogether with their resolvents. We obtain smoothness of the spectral\\nprojectors, and $t^2 \\\\log t$ regularity for the cusp-surgery trace of the\\nrelative resolvent in the degeneracy process as $t \\\\searrow 0$.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了当简单闭合测地线的长度 $t$ 缩为零时,在沿夹角测地线的自旋结构非三维的假设下,紧凑黎曼曲面的退化族上的狄拉克算子谱的行为。这个问题的难点在于极限曲面的非紧凑性,它具有有限面积和两个尖角。本研究的主要思路是本着著名的梅尔罗斯 b 代数的精神,构建一个经过调整的伪微分方程,其中包括紧凑曲面族上的狄拉克算子族和极限非紧凑曲面上的狄拉克算子,以及它们的解析子。我们得到了谱投影的平滑性,以及当 $t \searrow 0$ 时变性过程中相关解析子的尖顶手术迹的 $t^2 \log t$ 正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Dirac spectrum on degenerating Riemannian surfaces
We study the behavior of the spectrum of the Dirac operator on degenerating families of compact Riemannian surfaces, when the length $t$ of a simple closed geodesic shrinks to zero, under the hypothesis that the spin structure along the pinched geodesic is non-trivial. The difficulty of the problem stems from the non-compactness of the limit surface, which has finite area and two cusps. The main idea in this investigation is to construct an adapted pseudodifferential calculus, in the spirit of the celebrated b-algebra of Melrose, which includes both the family of Dirac operators on the family of compact surfaces and the Dirac operator on the limit non-compact surface, together with their resolvents. We obtain smoothness of the spectral projectors, and $t^2 \log t$ regularity for the cusp-surgery trace of the relative resolvent in the degeneracy process as $t \searrow 0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信