子覆盖图上的薛定谔算子谱

Natalia Saburova
{"title":"子覆盖图上的薛定谔算子谱","authors":"Natalia Saburova","doi":"arxiv-2409.05830","DOIUrl":null,"url":null,"abstract":"We consider discrete Schr\\\"odinger operators with periodic potentials on\nperiodic graphs. Their spectra consist of a finite number of bands. By \"rolling\nup\" a periodic graph along some appropriate directions we obtain periodic\ngraphs of smaller dimensions called subcovering graphs. For example, rolling up\na planar hexagonal lattice along different directions will lead to nanotubes\nwith various chiralities. We show that the subcovering graph is asymptotically\nisospectral to the original periodic graph as the length of the \"chiral\" (roll\nup) vectors tends to infinity and get asymptotics of the band edges of the\nSchr\\\"odinger operator on the subcovering graph. We also obtain a criterion for\nthe subcovering graph to be just isospectral to the original periodic graph. By\nisospectrality of periodic graphs we mean that the spectra of the Schr\\\"odinger\noperators on the graphs consist of the same number of bands and the\ncorresponding bands coincide as sets.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"171 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrum of Schrödinger operators on subcovering graphs\",\"authors\":\"Natalia Saburova\",\"doi\":\"arxiv-2409.05830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider discrete Schr\\\\\\\"odinger operators with periodic potentials on\\nperiodic graphs. Their spectra consist of a finite number of bands. By \\\"rolling\\nup\\\" a periodic graph along some appropriate directions we obtain periodic\\ngraphs of smaller dimensions called subcovering graphs. For example, rolling up\\na planar hexagonal lattice along different directions will lead to nanotubes\\nwith various chiralities. We show that the subcovering graph is asymptotically\\nisospectral to the original periodic graph as the length of the \\\"chiral\\\" (roll\\nup) vectors tends to infinity and get asymptotics of the band edges of the\\nSchr\\\\\\\"odinger operator on the subcovering graph. We also obtain a criterion for\\nthe subcovering graph to be just isospectral to the original periodic graph. By\\nisospectrality of periodic graphs we mean that the spectra of the Schr\\\\\\\"odinger\\noperators on the graphs consist of the same number of bands and the\\ncorresponding bands coincide as sets.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"171 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是周期图上具有周期势的离散薛定谔算子。它们的谱由有限数量的带组成。通过沿着某些适当的方向 "卷积 "周期图,我们可以得到尺寸更小的周期图,称为子覆盖图。例如,沿着不同的方向 "卷起 "平面六边形晶格,就会得到具有不同手性的纳米管。我们证明,当 "手性"(卷起)向量的长度趋于无穷大时,子覆盖图与原始周期图具有渐近同谱性,并得到子覆盖图上薛定谔算子带边的渐近性。我们还得到了子覆盖图与原始周期图刚好等谱的准则。我们所说的周期图的等谱性是指图上的薛定谔算子的谱由相同数目的带组成,并且对应的带作为集合重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectrum of Schrödinger operators on subcovering graphs
We consider discrete Schr\"odinger operators with periodic potentials on periodic graphs. Their spectra consist of a finite number of bands. By "rolling up" a periodic graph along some appropriate directions we obtain periodic graphs of smaller dimensions called subcovering graphs. For example, rolling up a planar hexagonal lattice along different directions will lead to nanotubes with various chiralities. We show that the subcovering graph is asymptotically isospectral to the original periodic graph as the length of the "chiral" (roll up) vectors tends to infinity and get asymptotics of the band edges of the Schr\"odinger operator on the subcovering graph. We also obtain a criterion for the subcovering graph to be just isospectral to the original periodic graph. By isospectrality of periodic graphs we mean that the spectra of the Schr\"odinger operators on the graphs consist of the same number of bands and the corresponding bands coincide as sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信