置于强磁场中的磁条中的狄拉克算子

Loïc Le Treust, Julien Royer, Nicolas Raymond
{"title":"置于强磁场中的磁条中的狄拉克算子","authors":"Loïc Le Treust, Julien Royer, Nicolas Raymond","doi":"arxiv-2409.06284","DOIUrl":null,"url":null,"abstract":"We consider the magnetic Dirac operator on a curved strip whose boundary\ncarries the infinite mass boundary condition. When the magnetic field is large,\nwe provide the reader with accurate estimates of the essential and discrete\nspectra. In particular, we give sufficient conditions ensuring that the\ndiscrete spectrum is non-empty.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Dirac operator in strips submitted to strong magnetic fields\",\"authors\":\"Loïc Le Treust, Julien Royer, Nicolas Raymond\",\"doi\":\"arxiv-2409.06284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the magnetic Dirac operator on a curved strip whose boundary\\ncarries the infinite mass boundary condition. When the magnetic field is large,\\nwe provide the reader with accurate estimates of the essential and discrete\\nspectra. In particular, we give sufficient conditions ensuring that the\\ndiscrete spectrum is non-empty.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了弯曲条带上的磁性狄拉克算子,其边界符合无限质量边界条件。当磁场很大时,我们为读者提供了基本谱和离散谱的精确估计。特别是,我们给出了确保离散谱非空的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic Dirac operator in strips submitted to strong magnetic fields
We consider the magnetic Dirac operator on a curved strip whose boundary carries the infinite mass boundary condition. When the magnetic field is large, we provide the reader with accurate estimates of the essential and discrete spectra. In particular, we give sufficient conditions ensuring that the discrete spectrum is non-empty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信