具有纯虚跃迁的位错势的狄拉克算子谱分析

Lyonell Boulton, David Krejcirik, Tho Nguyen Duc
{"title":"具有纯虚跃迁的位错势的狄拉克算子谱分析","authors":"Lyonell Boulton, David Krejcirik, Tho Nguyen Duc","doi":"arxiv-2409.06480","DOIUrl":null,"url":null,"abstract":"In this paper we present a complete spectral analysis of Dirac operators with\nnon-Hermitian matrix potentials of the form $i\\operatorname{sgn}(x)+V(x)$ where\n$V\\in L^1$. For $V=0$ we compute explicitly the matrix Green function. This\nallows us to determine the spectrum, which is purely essential, and its\ndifferent types. It also allows us to find sharp enclosures for the\npseudospectrum and its complement, in all parts of the complex plane. Notably,\nthis includes the instability region, corresponding to the interior of the band\nthat forms the numerical range. Then, with the help of a Birman-Schwinger\nprinciple, we establish in precise manner how the spectrum and pseudospectrum\nchange when $V\\not=0$, assuming the hypotheses $\\|V\\|_{L^1}<1$ or $V\\in L^1\\cap\nL^p$ where $p>1$. We show that the essential spectra remain unchanged and that\nthe $\\varepsilon$-pseudospectrum stays close to the instability region for\nsmall $\\varepsilon$. We determine sharp asymptotic for the discrete spectrum,\nwhenever $V$ satisfies further conditions of decay at infinity. Finally, in one\nof our main findings, we give a complete description of the weakly-coupled\nmodel.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral analysis of Dirac operators for dislocated potentials with a purely imaginary jump\",\"authors\":\"Lyonell Boulton, David Krejcirik, Tho Nguyen Duc\",\"doi\":\"arxiv-2409.06480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a complete spectral analysis of Dirac operators with\\nnon-Hermitian matrix potentials of the form $i\\\\operatorname{sgn}(x)+V(x)$ where\\n$V\\\\in L^1$. For $V=0$ we compute explicitly the matrix Green function. This\\nallows us to determine the spectrum, which is purely essential, and its\\ndifferent types. It also allows us to find sharp enclosures for the\\npseudospectrum and its complement, in all parts of the complex plane. Notably,\\nthis includes the instability region, corresponding to the interior of the band\\nthat forms the numerical range. Then, with the help of a Birman-Schwinger\\nprinciple, we establish in precise manner how the spectrum and pseudospectrum\\nchange when $V\\\\not=0$, assuming the hypotheses $\\\\|V\\\\|_{L^1}<1$ or $V\\\\in L^1\\\\cap\\nL^p$ where $p>1$. We show that the essential spectra remain unchanged and that\\nthe $\\\\varepsilon$-pseudospectrum stays close to the instability region for\\nsmall $\\\\varepsilon$. We determine sharp asymptotic for the discrete spectrum,\\nwhenever $V$ satisfies further conditions of decay at infinity. Finally, in one\\nof our main findings, we give a complete description of the weakly-coupled\\nmodel.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对具有非赫米提矩阵势的狄拉克算子进行了完整的谱分析,其形式为 $i\operatorname{sgn}(x)+V(x)$ 其中$V/in L^1$。对于 $V=0$,我们明确计算矩阵格林函数。这使我们能够确定纯粹本质的频谱及其不同类型。它还允许我们在复平面的所有部分找到伪频谱及其补集的尖锐包围。值得注意的是,这包括不稳定区域,对应于构成数值范围的频带内部。然后,在比尔曼-施温格原理的帮助下,我们以精确的方式确定了在假设 $\|V\|_{L^1}1$ 时,当 $V\not=0$ 时频谱和伪频谱是如何变化的。我们的研究表明,基本谱保持不变,而且对于较小的 $\varepsilon$ 来说,$\varepsilon$-伪谱保持在不稳定区域附近。只要 $V$ 满足进一步的无穷衰减条件,我们就能确定离散谱的尖锐渐近线。最后,在我们的主要发现之一中,我们给出了弱耦合模型的完整描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral analysis of Dirac operators for dislocated potentials with a purely imaginary jump
In this paper we present a complete spectral analysis of Dirac operators with non-Hermitian matrix potentials of the form $i\operatorname{sgn}(x)+V(x)$ where $V\in L^1$. For $V=0$ we compute explicitly the matrix Green function. This allows us to determine the spectrum, which is purely essential, and its different types. It also allows us to find sharp enclosures for the pseudospectrum and its complement, in all parts of the complex plane. Notably, this includes the instability region, corresponding to the interior of the band that forms the numerical range. Then, with the help of a Birman-Schwinger principle, we establish in precise manner how the spectrum and pseudospectrum change when $V\not=0$, assuming the hypotheses $\|V\|_{L^1}<1$ or $V\in L^1\cap L^p$ where $p>1$. We show that the essential spectra remain unchanged and that the $\varepsilon$-pseudospectrum stays close to the instability region for small $\varepsilon$. We determine sharp asymptotic for the discrete spectrum, whenever $V$ satisfies further conditions of decay at infinity. Finally, in one of our main findings, we give a complete description of the weakly-coupled model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信