半经典 Gevrey 算子的边界谱估计

Haoren Xiong
{"title":"半经典 Gevrey 算子的边界谱估计","authors":"Haoren Xiong","doi":"arxiv-2408.09098","DOIUrl":null,"url":null,"abstract":"We obtain the spectral and resolvent estimates for semiclassical\npseudodifferential operators with symbol of Gevrey-$s$ regularity, near the\nboundary of the range of the principal symbol. We prove that the boundary\nspectrum free region is of size ${\\mathcal O}(h^{1-\\frac{1}{s}})$ where the\nresolvent is at most fractional exponentially large in $h$, as the\nsemiclassical parameter $h\\to 0^+$. This is a natural Gevrey analogue of a\nresult by N. Dencker, J. Sj{\\\"o}strand, and M. Zworski in the $C^{\\infty}$ and\nanalytic cases.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary spectral estimates for semiclassical Gevrey operators\",\"authors\":\"Haoren Xiong\",\"doi\":\"arxiv-2408.09098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the spectral and resolvent estimates for semiclassical\\npseudodifferential operators with symbol of Gevrey-$s$ regularity, near the\\nboundary of the range of the principal symbol. We prove that the boundary\\nspectrum free region is of size ${\\\\mathcal O}(h^{1-\\\\frac{1}{s}})$ where the\\nresolvent is at most fractional exponentially large in $h$, as the\\nsemiclassical parameter $h\\\\to 0^+$. This is a natural Gevrey analogue of a\\nresult by N. Dencker, J. Sj{\\\\\\\"o}strand, and M. Zworski in the $C^{\\\\infty}$ and\\nanalytic cases.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了具有 Gevrey-$s$ 正则符号的半经典伪微分算子在主符号范围边界附近的谱和解析量估计。我们证明,无边界谱区域的大小为 ${mathcal O}(h^{1-\frac{1}{s}})$,其中溶剂在 $h$ 中最多是分数指数大,因为这些半经典参数 $h\to 0^+$。这是 N. Dencker、J. Sj{\"o}strand 和 M. Zworski 在$C^{\infty}$ 和解析情况下得出的结果的自然 Gevrey 类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary spectral estimates for semiclassical Gevrey operators
We obtain the spectral and resolvent estimates for semiclassical pseudodifferential operators with symbol of Gevrey-$s$ regularity, near the boundary of the range of the principal symbol. We prove that the boundary spectrum free region is of size ${\mathcal O}(h^{1-\frac{1}{s}})$ where the resolvent is at most fractional exponentially large in $h$, as the semiclassical parameter $h\to 0^+$. This is a natural Gevrey analogue of a result by N. Dencker, J. Sj{\"o}strand, and M. Zworski in the $C^{\infty}$ and analytic cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信