{"title":"半经典 Gevrey 算子的边界谱估计","authors":"Haoren Xiong","doi":"arxiv-2408.09098","DOIUrl":null,"url":null,"abstract":"We obtain the spectral and resolvent estimates for semiclassical\npseudodifferential operators with symbol of Gevrey-$s$ regularity, near the\nboundary of the range of the principal symbol. We prove that the boundary\nspectrum free region is of size ${\\mathcal O}(h^{1-\\frac{1}{s}})$ where the\nresolvent is at most fractional exponentially large in $h$, as the\nsemiclassical parameter $h\\to 0^+$. This is a natural Gevrey analogue of a\nresult by N. Dencker, J. Sj{\\\"o}strand, and M. Zworski in the $C^{\\infty}$ and\nanalytic cases.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary spectral estimates for semiclassical Gevrey operators\",\"authors\":\"Haoren Xiong\",\"doi\":\"arxiv-2408.09098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the spectral and resolvent estimates for semiclassical\\npseudodifferential operators with symbol of Gevrey-$s$ regularity, near the\\nboundary of the range of the principal symbol. We prove that the boundary\\nspectrum free region is of size ${\\\\mathcal O}(h^{1-\\\\frac{1}{s}})$ where the\\nresolvent is at most fractional exponentially large in $h$, as the\\nsemiclassical parameter $h\\\\to 0^+$. This is a natural Gevrey analogue of a\\nresult by N. Dencker, J. Sj{\\\\\\\"o}strand, and M. Zworski in the $C^{\\\\infty}$ and\\nanalytic cases.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们得到了具有 Gevrey-$s$ 正则符号的半经典伪微分算子在主符号范围边界附近的谱和解析量估计。我们证明,无边界谱区域的大小为 ${mathcal O}(h^{1-\frac{1}{s}})$,其中溶剂在 $h$ 中最多是分数指数大,因为这些半经典参数 $h\to 0^+$。这是 N. Dencker、J. Sj{\"o}strand 和 M. Zworski 在$C^{\infty}$ 和解析情况下得出的结果的自然 Gevrey 类比。
Boundary spectral estimates for semiclassical Gevrey operators
We obtain the spectral and resolvent estimates for semiclassical
pseudodifferential operators with symbol of Gevrey-$s$ regularity, near the
boundary of the range of the principal symbol. We prove that the boundary
spectrum free region is of size ${\mathcal O}(h^{1-\frac{1}{s}})$ where the
resolvent is at most fractional exponentially large in $h$, as the
semiclassical parameter $h\to 0^+$. This is a natural Gevrey analogue of a
result by N. Dencker, J. Sj{\"o}strand, and M. Zworski in the $C^{\infty}$ and
analytic cases.