曲线界面的体边对应关系

Alexis Drouot, Xiaowen Zhu
{"title":"曲线界面的体边对应关系","authors":"Alexis Drouot, Xiaowen Zhu","doi":"arxiv-2408.07950","DOIUrl":null,"url":null,"abstract":"The bulk-edge correspondence is a condensed matter theorem that relates the\nconductance of a Hall insulator in a half-plane to that of its (straight)\nboundary. In this work, we extend this result to domains with curved\nboundaries. Under mild geometric assumptions, we prove that the edge conductance of a\ntopological insulator sample is an integer multiple of its Hall conductance.\nThis integer counts the algebraic number of times that the interface (suitably\noriented) enters the measurement set. This result provides a rigorous proof of\na well-known experimental observation: arbitrarily truncated topological\ninsulators support edge currents, regardless of the shape of their boundary.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The bulk-edge correspondence for curved interfaces\",\"authors\":\"Alexis Drouot, Xiaowen Zhu\",\"doi\":\"arxiv-2408.07950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bulk-edge correspondence is a condensed matter theorem that relates the\\nconductance of a Hall insulator in a half-plane to that of its (straight)\\nboundary. In this work, we extend this result to domains with curved\\nboundaries. Under mild geometric assumptions, we prove that the edge conductance of a\\ntopological insulator sample is an integer multiple of its Hall conductance.\\nThis integer counts the algebraic number of times that the interface (suitably\\noriented) enters the measurement set. This result provides a rigorous proof of\\na well-known experimental observation: arbitrarily truncated topological\\ninsulators support edge currents, regardless of the shape of their boundary.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

体边对应是一个凝聚态定理,它将霍尔绝缘体在半平面上的电导与其(直线)边界的电导联系起来。在这项工作中,我们将这一结果扩展到具有弯曲边界的域。在温和的几何假设条件下,我们证明了拓扑绝缘体样本的边缘电导是其霍尔电导的整数倍。这个整数是指界面(适当定向)进入测量集的代数次数。这一结果严格证明了一个著名的实验观察结果:无论拓扑绝缘体的边界形状如何,任意截断的拓扑绝缘体都支持边缘电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The bulk-edge correspondence for curved interfaces
The bulk-edge correspondence is a condensed matter theorem that relates the conductance of a Hall insulator in a half-plane to that of its (straight) boundary. In this work, we extend this result to domains with curved boundaries. Under mild geometric assumptions, we prove that the edge conductance of a topological insulator sample is an integer multiple of its Hall conductance. This integer counts the algebraic number of times that the interface (suitably oriented) enters the measurement set. This result provides a rigorous proof of a well-known experimental observation: arbitrarily truncated topological insulators support edge currents, regardless of the shape of their boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信