替代系统的频谱近似法

Ram Band, Siegfried Beckus, Felix Pogorzelski, Lior Tenenbaum
{"title":"替代系统的频谱近似法","authors":"Ram Band, Siegfried Beckus, Felix Pogorzelski, Lior Tenenbaum","doi":"arxiv-2408.09282","DOIUrl":null,"url":null,"abstract":"We study periodic approximations of aperiodic Schr\\\"odinger operators on\nlattices in Lie groups with dilation structure. The potentials arise through\nsymbolic substitution systems that have been recently introduced in this\nsetting. We characterize convergence of spectra of associated Schr\\\"odinger\noperators in the Hausdorff distance via properties of finite graphs. As a\nconsequence, new examples of periodic approximations are obtained. We further\nprove that there are substitution systems that do not admit periodic\napproximations in higher dimensions, in contrast to the one-dimensional case.\nOn the other hand, if the spectra converge, then we show that the rate of\nconvergence is necessarily exponentially fast. These results are new even for\nsubstitutions over $\\mathbb{Z}^d$.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Approximation for substitution systems\",\"authors\":\"Ram Band, Siegfried Beckus, Felix Pogorzelski, Lior Tenenbaum\",\"doi\":\"arxiv-2408.09282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study periodic approximations of aperiodic Schr\\\\\\\"odinger operators on\\nlattices in Lie groups with dilation structure. The potentials arise through\\nsymbolic substitution systems that have been recently introduced in this\\nsetting. We characterize convergence of spectra of associated Schr\\\\\\\"odinger\\noperators in the Hausdorff distance via properties of finite graphs. As a\\nconsequence, new examples of periodic approximations are obtained. We further\\nprove that there are substitution systems that do not admit periodic\\napproximations in higher dimensions, in contrast to the one-dimensional case.\\nOn the other hand, if the spectra converge, then we show that the rate of\\nconvergence is necessarily exponentially fast. These results are new even for\\nsubstitutions over $\\\\mathbb{Z}^d$.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有扩张结构的李群晶格上的非周期性薛定谔算子的周期近似。这些势是通过最近在此设置中引入的符号置换系统产生的。我们通过有限图的性质描述了豪斯多夫距离中相关薛定谔算子谱的收敛性。由此,我们得到了周期近似的新例子。另一方面,如果谱收敛,那么我们证明收敛速度必然是指数级的。即使对于 $\mathbb{Z}^d$ 上的替换,这些结果也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Approximation for substitution systems
We study periodic approximations of aperiodic Schr\"odinger operators on lattices in Lie groups with dilation structure. The potentials arise through symbolic substitution systems that have been recently introduced in this setting. We characterize convergence of spectra of associated Schr\"odinger operators in the Hausdorff distance via properties of finite graphs. As a consequence, new examples of periodic approximations are obtained. We further prove that there are substitution systems that do not admit periodic approximations in higher dimensions, in contrast to the one-dimensional case. On the other hand, if the spectra converge, then we show that the rate of convergence is necessarily exponentially fast. These results are new even for substitutions over $\mathbb{Z}^d$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信