优化罗宾拉普拉卡方的地面:渐近行为

Pavel Exner, Hynek Kovarik
{"title":"优化罗宾拉普拉卡方的地面:渐近行为","authors":"Pavel Exner, Hynek Kovarik","doi":"arxiv-2408.11636","DOIUrl":null,"url":null,"abstract":"In this note we consider achieving the largest principle eigenvalue of a\nRobin Laplacian on a bounded domain $\\Omega$ by optimizing the Robin parameter\nfunction under an integral constraint. The main novelty of our approach lies in\nestablishing a close relation between the problem under consideration and the\nasymptotic behavior of the Dirichlet heat content of $\\Omega$. By using this\nrelation we deduce a two-term asymptotic expansion of the principle eigenvalue\nand discuss several applications.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the ground of a Robin Laplacian: asymptotic behavior\",\"authors\":\"Pavel Exner, Hynek Kovarik\",\"doi\":\"arxiv-2408.11636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we consider achieving the largest principle eigenvalue of a\\nRobin Laplacian on a bounded domain $\\\\Omega$ by optimizing the Robin parameter\\nfunction under an integral constraint. The main novelty of our approach lies in\\nestablishing a close relation between the problem under consideration and the\\nasymptotic behavior of the Dirichlet heat content of $\\\\Omega$. By using this\\nrelation we deduce a two-term asymptotic expansion of the principle eigenvalue\\nand discuss several applications.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们考虑通过在积分约束条件下优化罗宾参数函数来实现有界域 $\Omega$ 上罗宾拉普拉卡矩的最大原则特征值。我们方法的主要新颖之处在于建立了所考虑问题与 $\Omega$ 的 Dirichlet 热含量的渐近行为之间的密切关系。利用这种关系,我们推导出了原理特征值的两期渐近展开,并讨论了几种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the ground of a Robin Laplacian: asymptotic behavior
In this note we consider achieving the largest principle eigenvalue of a Robin Laplacian on a bounded domain $\Omega$ by optimizing the Robin parameter function under an integral constraint. The main novelty of our approach lies in establishing a close relation between the problem under consideration and the asymptotic behavior of the Dirichlet heat content of $\Omega$. By using this relation we deduce a two-term asymptotic expansion of the principle eigenvalue and discuss several applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信