具有半约束变化势的准周期算子的锐算脱域问题

Svetlana Jitomirskaya, Ilya Kachkovskiy
{"title":"具有半约束变化势的准周期算子的锐算脱域问题","authors":"Svetlana Jitomirskaya, Ilya Kachkovskiy","doi":"arxiv-2408.16935","DOIUrl":null,"url":null,"abstract":"We obtain the sharp arithmetic Gordon's theorem: that is, absence of\neigenvalues on the set of energies with Lyapunov exponent bounded by the\nexponential rate of approximation of frequency by the rationals, for a large\nclass of one-dimensional quasiperiodic Schr\\\"odinger operators, with no\n(modulus of) continuity required. The class includes all unbounded monotone\npotentials with finite Lyapunov exponents and all potentials of bounded\nvariation. The main tool is a new uniform upper bound on iterates of cocycles\nof bounded variation.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp arithmetic delocalization for quasiperiodic operators with potentials of semi-bounded variation\",\"authors\":\"Svetlana Jitomirskaya, Ilya Kachkovskiy\",\"doi\":\"arxiv-2408.16935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the sharp arithmetic Gordon's theorem: that is, absence of\\neigenvalues on the set of energies with Lyapunov exponent bounded by the\\nexponential rate of approximation of frequency by the rationals, for a large\\nclass of one-dimensional quasiperiodic Schr\\\\\\\"odinger operators, with no\\n(modulus of) continuity required. The class includes all unbounded monotone\\npotentials with finite Lyapunov exponents and all potentials of bounded\\nvariation. The main tool is a new uniform upper bound on iterates of cocycles\\nof bounded variation.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了尖锐的算术戈登定理:即对于一大类一维准周期薛定谔算子,在不要求连续性(模数)的情况下,不存在李亚普诺夫指数以有理数逼近频率的指数率为界的能量集合上的特征值。该类包括所有具有有限李雅普诺夫指数的无界单势和所有有界变化的势。主要工具是有界变化循环迭代的新统一上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp arithmetic delocalization for quasiperiodic operators with potentials of semi-bounded variation
We obtain the sharp arithmetic Gordon's theorem: that is, absence of eigenvalues on the set of energies with Lyapunov exponent bounded by the exponential rate of approximation of frequency by the rationals, for a large class of one-dimensional quasiperiodic Schr\"odinger operators, with no (modulus of) continuity required. The class includes all unbounded monotone potentials with finite Lyapunov exponents and all potentials of bounded variation. The main tool is a new uniform upper bound on iterates of cocycles of bounded variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信