利用深度学习对 BSM 扩展中的参数约束进行多标签分类

Maien Binjonaid
{"title":"利用深度学习对 BSM 扩展中的参数约束进行多标签分类","authors":"Maien Binjonaid","doi":"arxiv-2409.05453","DOIUrl":null,"url":null,"abstract":"The shortcomings of the Standard Model (SM) motivate its extension to\naccommodate new expected phenomena, such as dark matter and neutrino masses.\nHowever, such extensions are generally more complex due to the presence of a\nlarger number of free parameters as well as additional phenomenology.\nUnderstanding how current theoretical and experimental constraints,\nindividually and collectively, affect the parameter spaces of new models is of\nutmost importance in achieving testable predictions and targeted model-building\nthat aims to solve certain issues. We present a comprehensive approach of using\nDeep Learning (DL) for the multi-label classification (MLC) of theoretical and\nexperimental limits on the two-Higgs doublet model augmented by a real singlet\n(N2HDM), as a representative case. This approach can be generalized to any\nextension beyond the SM.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-label Classification of Parameter Constraints in BSM Extensions using Deep Learning\",\"authors\":\"Maien Binjonaid\",\"doi\":\"arxiv-2409.05453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The shortcomings of the Standard Model (SM) motivate its extension to\\naccommodate new expected phenomena, such as dark matter and neutrino masses.\\nHowever, such extensions are generally more complex due to the presence of a\\nlarger number of free parameters as well as additional phenomenology.\\nUnderstanding how current theoretical and experimental constraints,\\nindividually and collectively, affect the parameter spaces of new models is of\\nutmost importance in achieving testable predictions and targeted model-building\\nthat aims to solve certain issues. We present a comprehensive approach of using\\nDeep Learning (DL) for the multi-label classification (MLC) of theoretical and\\nexperimental limits on the two-Higgs doublet model augmented by a real singlet\\n(N2HDM), as a representative case. This approach can be generalized to any\\nextension beyond the SM.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

标准模型(SM)的缺陷促使其扩展以适应新的预期现象,如暗物质和中微子质量。然而,由于存在更多的自由参数以及额外的现象学,这种扩展通常更为复杂。了解当前的理论和实验约束如何单独或集体地影响新模型的参数空间,对于实现可检验的预测和旨在解决某些问题的有针对性的模型构建至关重要。我们提出了一种综合方法,即使用深度学习(Deep Learning,DL)对以实单子增强的双希格斯双子模型(N2HDM)为代表的理论和实验限制进行多标签分类(MLC)。这种方法可以推广到 SM 以外的任何扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-label Classification of Parameter Constraints in BSM Extensions using Deep Learning
The shortcomings of the Standard Model (SM) motivate its extension to accommodate new expected phenomena, such as dark matter and neutrino masses. However, such extensions are generally more complex due to the presence of a larger number of free parameters as well as additional phenomenology. Understanding how current theoretical and experimental constraints, individually and collectively, affect the parameter spaces of new models is of utmost importance in achieving testable predictions and targeted model-building that aims to solve certain issues. We present a comprehensive approach of using Deep Learning (DL) for the multi-label classification (MLC) of theoretical and experimental limits on the two-Higgs doublet model augmented by a real singlet (N2HDM), as a representative case. This approach can be generalized to any extension beyond the SM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信