基于动态贝叶斯网络的传动轴制造系统可靠性分析

IF 2.2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Taotao Cheng, Diqing Fan, Xintian Liu, JinGang Wang
{"title":"基于动态贝叶斯网络的传动轴制造系统可靠性分析","authors":"Taotao Cheng, Diqing Fan, Xintian Liu, JinGang Wang","doi":"10.1002/qre.3644","DOIUrl":null,"url":null,"abstract":"Accurately analyzing the reliability of driveshaft systems is crucial in engineering vehicles and mechanical equipment. A complex system reliability modeling and analysis method based on a dynamic Bayesian network (DBN) is proposed to repair accurately and reduce the cost in time. Considering the logical structure of the drive shaft system, the reliability block diagram (RBD) of the manufacturing system is constructed in a hierarchical and graded manner, and a method of obtaining the Bayesian network (BN) directly from the RBD is adopted based on the conversion relationship between the RBD, fault tree and BN. A variable‐structure DBN model of the system is constructed based on a static BN extended in time series and incorporating dynamic reliability parameters of the components. Reliability analyses based on DBN reasoning, including reliability assessment, significance metrics, and sensitivity analyses, were performed to identify critical subsystems and critical components. This research contributes to enhancing product reliability, equipment utilization, and improving economic efficiency.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability analysis for manufacturing system of drive shaft based on dynamic Bayesian network\",\"authors\":\"Taotao Cheng, Diqing Fan, Xintian Liu, JinGang Wang\",\"doi\":\"10.1002/qre.3644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately analyzing the reliability of driveshaft systems is crucial in engineering vehicles and mechanical equipment. A complex system reliability modeling and analysis method based on a dynamic Bayesian network (DBN) is proposed to repair accurately and reduce the cost in time. Considering the logical structure of the drive shaft system, the reliability block diagram (RBD) of the manufacturing system is constructed in a hierarchical and graded manner, and a method of obtaining the Bayesian network (BN) directly from the RBD is adopted based on the conversion relationship between the RBD, fault tree and BN. A variable‐structure DBN model of the system is constructed based on a static BN extended in time series and incorporating dynamic reliability parameters of the components. Reliability analyses based on DBN reasoning, including reliability assessment, significance metrics, and sensitivity analyses, were performed to identify critical subsystems and critical components. This research contributes to enhancing product reliability, equipment utilization, and improving economic efficiency.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3644\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3644","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

准确分析传动轴系统的可靠性对车辆和机械设备工程至关重要。本文提出了一种基于动态贝叶斯网络(DBN)的复杂系统可靠性建模和分析方法,以实现精确维修并降低时间成本。考虑到传动轴系统的逻辑结构,分层分级构建了制造系统的可靠性框图(RBD),并根据 RBD、故障树和 BN 之间的转换关系,采用直接从 RBD 中获取贝叶斯网络(BN)的方法。基于时间序列扩展的静态贝叶斯网络,并结合部件的动态可靠性参数,构建了系统的变结构 DBN 模型。基于 DBN 推理的可靠性分析包括可靠性评估、重要性度量和敏感性分析,以确定关键子系统和关键组件。这项研究有助于提高产品可靠性、设备利用率和经济效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability analysis for manufacturing system of drive shaft based on dynamic Bayesian network
Accurately analyzing the reliability of driveshaft systems is crucial in engineering vehicles and mechanical equipment. A complex system reliability modeling and analysis method based on a dynamic Bayesian network (DBN) is proposed to repair accurately and reduce the cost in time. Considering the logical structure of the drive shaft system, the reliability block diagram (RBD) of the manufacturing system is constructed in a hierarchical and graded manner, and a method of obtaining the Bayesian network (BN) directly from the RBD is adopted based on the conversion relationship between the RBD, fault tree and BN. A variable‐structure DBN model of the system is constructed based on a static BN extended in time series and incorporating dynamic reliability parameters of the components. Reliability analyses based on DBN reasoning, including reliability assessment, significance metrics, and sensitivity analyses, were performed to identify critical subsystems and critical components. This research contributes to enhancing product reliability, equipment utilization, and improving economic efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
21.70%
发文量
181
审稿时长
6 months
期刊介绍: Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering. Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies. The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal. Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry. Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信