Florian Lamalle, Vincent Feuillard, Anne Sabourin, Stephan Clémençon
{"title":"基于有删减数据的 Weibull 混合估计,在可靠性工程中的聚类应用","authors":"Florian Lamalle, Vincent Feuillard, Anne Sabourin, Stephan Clémençon","doi":"10.1002/qre.3647","DOIUrl":null,"url":null,"abstract":"It is the purpose of this paper to propose a novel clustering technique tailored to randomly censored data in reliability/survival analysis. It is based on an underlying mixture model of Weibull distributions and consists in estimating its parameters by means of a variant of the <jats:italic>Expectation–Maximization</jats:italic> method in the presence of random censorship. Beyond the description of the algorithm, model selection issues are addressed and we investigate its performance from an empirical perspective by applying it to possibly strongly censored (synthetic and real) survival data. The experiments carried out provide strong empirical evidence that our algorithm performs better than alternative methods standing as natural competitors in this framework.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":"12 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weibull mixture estimation based on censored data with applications to clustering in reliability engineering\",\"authors\":\"Florian Lamalle, Vincent Feuillard, Anne Sabourin, Stephan Clémençon\",\"doi\":\"10.1002/qre.3647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is the purpose of this paper to propose a novel clustering technique tailored to randomly censored data in reliability/survival analysis. It is based on an underlying mixture model of Weibull distributions and consists in estimating its parameters by means of a variant of the <jats:italic>Expectation–Maximization</jats:italic> method in the presence of random censorship. Beyond the description of the algorithm, model selection issues are addressed and we investigate its performance from an empirical perspective by applying it to possibly strongly censored (synthetic and real) survival data. The experiments carried out provide strong empirical evidence that our algorithm performs better than alternative methods standing as natural competitors in this framework.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3647\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3647","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Weibull mixture estimation based on censored data with applications to clustering in reliability engineering
It is the purpose of this paper to propose a novel clustering technique tailored to randomly censored data in reliability/survival analysis. It is based on an underlying mixture model of Weibull distributions and consists in estimating its parameters by means of a variant of the Expectation–Maximization method in the presence of random censorship. Beyond the description of the algorithm, model selection issues are addressed and we investigate its performance from an empirical perspective by applying it to possibly strongly censored (synthetic and real) survival data. The experiments carried out provide strong empirical evidence that our algorithm performs better than alternative methods standing as natural competitors in this framework.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.