{"title":"基于代理的具有方向约束的导向虚拟夹具","authors":"Weitao Hu, Xinan Pan, Hongguang Wang","doi":"10.1007/s41315-024-00371-w","DOIUrl":null,"url":null,"abstract":"<p>Aiming at the problem of defining the shortest distance between poses in traditional virtual fixtures, this paper proposes a proxy-based guidance virtual fixtures with orientation constraints, which can assist operators in the path following task. By designing the dynamics of the proxy and then connecting it to the robot using a spring-damping model, the end-effector position can be constrained within the pipeline and cone, and the stiffness coefficients of the virtual forces can be adjusted linearly or nonlinearly. To overcome the cumulative errors, we then propose a discretized improved algorithm, which applies the virtual fixtures on a discretized reference curve. Furthermore, the orientation constraints are defined, and hence the end-effector orientation can also be constrained within a specific range to comply with ergonomics. An experiment was conducted using a Franka Emika Panda robot and involving 9 subjects. The results show that compared to the gravity compensation mode, the pipeline virtual fixtures and the virtual fixtures with the pipeline and cone, as proposed in this paper, reduced task completion time by 38% and 44.7%, respectively. Additionally, they reduced the total mental burden obtained from NASA-TLX by 29.96% and 47.42%, respectively.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proxy-based guidance virtual fixtures with orientation constraints\",\"authors\":\"Weitao Hu, Xinan Pan, Hongguang Wang\",\"doi\":\"10.1007/s41315-024-00371-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aiming at the problem of defining the shortest distance between poses in traditional virtual fixtures, this paper proposes a proxy-based guidance virtual fixtures with orientation constraints, which can assist operators in the path following task. By designing the dynamics of the proxy and then connecting it to the robot using a spring-damping model, the end-effector position can be constrained within the pipeline and cone, and the stiffness coefficients of the virtual forces can be adjusted linearly or nonlinearly. To overcome the cumulative errors, we then propose a discretized improved algorithm, which applies the virtual fixtures on a discretized reference curve. Furthermore, the orientation constraints are defined, and hence the end-effector orientation can also be constrained within a specific range to comply with ergonomics. An experiment was conducted using a Franka Emika Panda robot and involving 9 subjects. The results show that compared to the gravity compensation mode, the pipeline virtual fixtures and the virtual fixtures with the pipeline and cone, as proposed in this paper, reduced task completion time by 38% and 44.7%, respectively. Additionally, they reduced the total mental burden obtained from NASA-TLX by 29.96% and 47.42%, respectively.</p>\",\"PeriodicalId\":44563,\"journal\":{\"name\":\"International Journal of Intelligent Robotics and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Robotics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41315-024-00371-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Robotics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41315-024-00371-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Proxy-based guidance virtual fixtures with orientation constraints
Aiming at the problem of defining the shortest distance between poses in traditional virtual fixtures, this paper proposes a proxy-based guidance virtual fixtures with orientation constraints, which can assist operators in the path following task. By designing the dynamics of the proxy and then connecting it to the robot using a spring-damping model, the end-effector position can be constrained within the pipeline and cone, and the stiffness coefficients of the virtual forces can be adjusted linearly or nonlinearly. To overcome the cumulative errors, we then propose a discretized improved algorithm, which applies the virtual fixtures on a discretized reference curve. Furthermore, the orientation constraints are defined, and hence the end-effector orientation can also be constrained within a specific range to comply with ergonomics. An experiment was conducted using a Franka Emika Panda robot and involving 9 subjects. The results show that compared to the gravity compensation mode, the pipeline virtual fixtures and the virtual fixtures with the pipeline and cone, as proposed in this paper, reduced task completion time by 38% and 44.7%, respectively. Additionally, they reduced the total mental burden obtained from NASA-TLX by 29.96% and 47.42%, respectively.
期刊介绍:
The International Journal of Intelligent Robotics and Applications (IJIRA) fosters the dissemination of new discoveries and novel technologies that advance developments in robotics and their broad applications. This journal provides a publication and communication platform for all robotics topics, from the theoretical fundamentals and technological advances to various applications including manufacturing, space vehicles, biomedical systems and automobiles, data-storage devices, healthcare systems, home appliances, and intelligent highways. IJIRA welcomes contributions from researchers, professionals and industrial practitioners. It publishes original, high-quality and previously unpublished research papers, brief reports, and critical reviews. Specific areas of interest include, but are not limited to:Advanced actuators and sensorsCollective and social robots Computing, communication and controlDesign, modeling and prototypingHuman and robot interactionMachine learning and intelligenceMobile robots and intelligent autonomous systemsMulti-sensor fusion and perceptionPlanning, navigation and localizationRobot intelligence, learning and linguisticsRobotic vision, recognition and reconstructionBio-mechatronics and roboticsCloud and Swarm roboticsCognitive and neuro roboticsExploration and security roboticsHealthcare, medical and assistive roboticsRobotics for intelligent manufacturingService, social and entertainment roboticsSpace and underwater robotsNovel and emerging applications