有界域中质量临界基尔霍夫方程归一化基态的集中行为

Shubin Yu, Chen Yang, Chun-Lei Tang
{"title":"有界域中质量临界基尔霍夫方程归一化基态的集中行为","authors":"Shubin Yu, Chen Yang, Chun-Lei Tang","doi":"arxiv-2409.05130","DOIUrl":null,"url":null,"abstract":"In present paper, we study the limit behavior of normalized ground states for\nthe following mass critical Kirchhoff equation $$ \\left\\{\\begin{array}{ll}\n-(a+b\\int_{\\Omega}|\\nabla u|^2\\mathrm{d}x)\\Delta u+V(x)u=\\mu\nu+\\beta^*|u|^{\\frac{8}{3}}u &\\mbox{in}\\ {\\Omega}, \\\\[0.1cm] u=0&\\mbox{on}\\ {\\partial\\Omega}, \\\\[0.1cm] \\int_{\\Omega}|u|^2\\mathrm{d}x=1,\n\\\\[0.1cm] \\end{array} \\right. $$ where $a\\geq0$, $b>0$, the function $V(x)$ is\na trapping potential in a bounded domain $\\Omega\\subset\\mathbb R^3$,\n$\\beta^*:=\\frac{b}{2}|Q|_2^{\\frac{8}{3}}$ and $Q$ is the unique positive\nradially symmetric solution of equation $-2\\Delta\nu+\\frac{1}{3}u-|u|^{\\frac{8}{3}}u=0.$ We consider the existence of constraint\nminimizers for the associated energy functional involving the parameter $a$.\nThe minimizer corresponds to the normalized ground state of above problem, and\nit exists if and only if $a>0$. Moreover, when $V(x)$ attains its flattest\nglobal minimum at an inner point or only at the boundary of $\\Omega$, we\nanalyze the fine limit profiles of the minimizers as $a\\searrow 0$, including\nmass concentration at an inner point or near the boundary of $\\Omega$. In\nparticular, we further establish the local uniqueness of the minimizer if it is\nconcentrated at a unique inner point.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration behavior of normalized ground states for mass critical Kirchhoff equations in bounded domains\",\"authors\":\"Shubin Yu, Chen Yang, Chun-Lei Tang\",\"doi\":\"arxiv-2409.05130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In present paper, we study the limit behavior of normalized ground states for\\nthe following mass critical Kirchhoff equation $$ \\\\left\\\\{\\\\begin{array}{ll}\\n-(a+b\\\\int_{\\\\Omega}|\\\\nabla u|^2\\\\mathrm{d}x)\\\\Delta u+V(x)u=\\\\mu\\nu+\\\\beta^*|u|^{\\\\frac{8}{3}}u &\\\\mbox{in}\\\\ {\\\\Omega}, \\\\\\\\[0.1cm] u=0&\\\\mbox{on}\\\\ {\\\\partial\\\\Omega}, \\\\\\\\[0.1cm] \\\\int_{\\\\Omega}|u|^2\\\\mathrm{d}x=1,\\n\\\\\\\\[0.1cm] \\\\end{array} \\\\right. $$ where $a\\\\geq0$, $b>0$, the function $V(x)$ is\\na trapping potential in a bounded domain $\\\\Omega\\\\subset\\\\mathbb R^3$,\\n$\\\\beta^*:=\\\\frac{b}{2}|Q|_2^{\\\\frac{8}{3}}$ and $Q$ is the unique positive\\nradially symmetric solution of equation $-2\\\\Delta\\nu+\\\\frac{1}{3}u-|u|^{\\\\frac{8}{3}}u=0.$ We consider the existence of constraint\\nminimizers for the associated energy functional involving the parameter $a$.\\nThe minimizer corresponds to the normalized ground state of above problem, and\\nit exists if and only if $a>0$. Moreover, when $V(x)$ attains its flattest\\nglobal minimum at an inner point or only at the boundary of $\\\\Omega$, we\\nanalyze the fine limit profiles of the minimizers as $a\\\\searrow 0$, including\\nmass concentration at an inner point or near the boundary of $\\\\Omega$. In\\nparticular, we further establish the local uniqueness of the minimizer if it is\\nconcentrated at a unique inner point.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了以下质量临界基尔霍夫方程的归一化基态的极限行为 $$ \left\{\begin{array}{ll}-(a+b\int_\{Omega}|\nabla u|^2\mathrm{d}x)\Delta u+V(x)u=\muu+\beta^*|u|^{\frac{8}{3}}u &\mbox{in}\ {\Omega},\\[0.u=0&\mbox{on}\ {\partial\Omega},\[0.1cm] \int_{\Omega}|u|^2\mathrm{d}x=1,\[0.1cm] (end{array})。\right。$$ 其中 $a\geq0$, $b>0$, 函数 $V(x)$ 是有界域 $\Omega\subset\mathbb R^3$, $\beta^*:=\frac{b}{2}|Q|_2^{\frac{8}{3}$ 并且 $Q$ 是方程 $-2\Deltau+\frac{1}{3}u-|u|^{\frac{8}{3}}u=0 的唯一正向对称解。当且仅当 $a>0$ 时,最小值对应于上述问题的归一化基态。此外,当$V(x)$在一个内点或仅在$\Omega$边界处达到其平坦的全局最小值时,我们分析了当$a\searrow 0$时最小值的精细极限剖面,包括在内点或靠近$\Omega$边界处的质量浓度。特别是,如果最小量集中在一个唯一的内点,我们将进一步建立最小量的局部唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concentration behavior of normalized ground states for mass critical Kirchhoff equations in bounded domains
In present paper, we study the limit behavior of normalized ground states for the following mass critical Kirchhoff equation $$ \left\{\begin{array}{ll} -(a+b\int_{\Omega}|\nabla u|^2\mathrm{d}x)\Delta u+V(x)u=\mu u+\beta^*|u|^{\frac{8}{3}}u &\mbox{in}\ {\Omega}, \\[0.1cm] u=0&\mbox{on}\ {\partial\Omega}, \\[0.1cm] \int_{\Omega}|u|^2\mathrm{d}x=1, \\[0.1cm] \end{array} \right. $$ where $a\geq0$, $b>0$, the function $V(x)$ is a trapping potential in a bounded domain $\Omega\subset\mathbb R^3$, $\beta^*:=\frac{b}{2}|Q|_2^{\frac{8}{3}}$ and $Q$ is the unique positive radially symmetric solution of equation $-2\Delta u+\frac{1}{3}u-|u|^{\frac{8}{3}}u=0.$ We consider the existence of constraint minimizers for the associated energy functional involving the parameter $a$. The minimizer corresponds to the normalized ground state of above problem, and it exists if and only if $a>0$. Moreover, when $V(x)$ attains its flattest global minimum at an inner point or only at the boundary of $\Omega$, we analyze the fine limit profiles of the minimizers as $a\searrow 0$, including mass concentration at an inner point or near the boundary of $\Omega$. In particular, we further establish the local uniqueness of the minimizer if it is concentrated at a unique inner point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信