{"title":"有界域中质量临界基尔霍夫方程归一化基态的集中行为","authors":"Shubin Yu, Chen Yang, Chun-Lei Tang","doi":"arxiv-2409.05130","DOIUrl":null,"url":null,"abstract":"In present paper, we study the limit behavior of normalized ground states for\nthe following mass critical Kirchhoff equation $$ \\left\\{\\begin{array}{ll}\n-(a+b\\int_{\\Omega}|\\nabla u|^2\\mathrm{d}x)\\Delta u+V(x)u=\\mu\nu+\\beta^*|u|^{\\frac{8}{3}}u &\\mbox{in}\\ {\\Omega}, \\\\[0.1cm] u=0&\\mbox{on}\\ {\\partial\\Omega}, \\\\[0.1cm] \\int_{\\Omega}|u|^2\\mathrm{d}x=1,\n\\\\[0.1cm] \\end{array} \\right. $$ where $a\\geq0$, $b>0$, the function $V(x)$ is\na trapping potential in a bounded domain $\\Omega\\subset\\mathbb R^3$,\n$\\beta^*:=\\frac{b}{2}|Q|_2^{\\frac{8}{3}}$ and $Q$ is the unique positive\nradially symmetric solution of equation $-2\\Delta\nu+\\frac{1}{3}u-|u|^{\\frac{8}{3}}u=0.$ We consider the existence of constraint\nminimizers for the associated energy functional involving the parameter $a$.\nThe minimizer corresponds to the normalized ground state of above problem, and\nit exists if and only if $a>0$. Moreover, when $V(x)$ attains its flattest\nglobal minimum at an inner point or only at the boundary of $\\Omega$, we\nanalyze the fine limit profiles of the minimizers as $a\\searrow 0$, including\nmass concentration at an inner point or near the boundary of $\\Omega$. In\nparticular, we further establish the local uniqueness of the minimizer if it is\nconcentrated at a unique inner point.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration behavior of normalized ground states for mass critical Kirchhoff equations in bounded domains\",\"authors\":\"Shubin Yu, Chen Yang, Chun-Lei Tang\",\"doi\":\"arxiv-2409.05130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In present paper, we study the limit behavior of normalized ground states for\\nthe following mass critical Kirchhoff equation $$ \\\\left\\\\{\\\\begin{array}{ll}\\n-(a+b\\\\int_{\\\\Omega}|\\\\nabla u|^2\\\\mathrm{d}x)\\\\Delta u+V(x)u=\\\\mu\\nu+\\\\beta^*|u|^{\\\\frac{8}{3}}u &\\\\mbox{in}\\\\ {\\\\Omega}, \\\\\\\\[0.1cm] u=0&\\\\mbox{on}\\\\ {\\\\partial\\\\Omega}, \\\\\\\\[0.1cm] \\\\int_{\\\\Omega}|u|^2\\\\mathrm{d}x=1,\\n\\\\\\\\[0.1cm] \\\\end{array} \\\\right. $$ where $a\\\\geq0$, $b>0$, the function $V(x)$ is\\na trapping potential in a bounded domain $\\\\Omega\\\\subset\\\\mathbb R^3$,\\n$\\\\beta^*:=\\\\frac{b}{2}|Q|_2^{\\\\frac{8}{3}}$ and $Q$ is the unique positive\\nradially symmetric solution of equation $-2\\\\Delta\\nu+\\\\frac{1}{3}u-|u|^{\\\\frac{8}{3}}u=0.$ We consider the existence of constraint\\nminimizers for the associated energy functional involving the parameter $a$.\\nThe minimizer corresponds to the normalized ground state of above problem, and\\nit exists if and only if $a>0$. Moreover, when $V(x)$ attains its flattest\\nglobal minimum at an inner point or only at the boundary of $\\\\Omega$, we\\nanalyze the fine limit profiles of the minimizers as $a\\\\searrow 0$, including\\nmass concentration at an inner point or near the boundary of $\\\\Omega$. In\\nparticular, we further establish the local uniqueness of the minimizer if it is\\nconcentrated at a unique inner point.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concentration behavior of normalized ground states for mass critical Kirchhoff equations in bounded domains
In present paper, we study the limit behavior of normalized ground states for
the following mass critical Kirchhoff equation $$ \left\{\begin{array}{ll}
-(a+b\int_{\Omega}|\nabla u|^2\mathrm{d}x)\Delta u+V(x)u=\mu
u+\beta^*|u|^{\frac{8}{3}}u &\mbox{in}\ {\Omega}, \\[0.1cm] u=0&\mbox{on}\ {\partial\Omega}, \\[0.1cm] \int_{\Omega}|u|^2\mathrm{d}x=1,
\\[0.1cm] \end{array} \right. $$ where $a\geq0$, $b>0$, the function $V(x)$ is
a trapping potential in a bounded domain $\Omega\subset\mathbb R^3$,
$\beta^*:=\frac{b}{2}|Q|_2^{\frac{8}{3}}$ and $Q$ is the unique positive
radially symmetric solution of equation $-2\Delta
u+\frac{1}{3}u-|u|^{\frac{8}{3}}u=0.$ We consider the existence of constraint
minimizers for the associated energy functional involving the parameter $a$.
The minimizer corresponds to the normalized ground state of above problem, and
it exists if and only if $a>0$. Moreover, when $V(x)$ attains its flattest
global minimum at an inner point or only at the boundary of $\Omega$, we
analyze the fine limit profiles of the minimizers as $a\searrow 0$, including
mass concentration at an inner point or near the boundary of $\Omega$. In
particular, we further establish the local uniqueness of the minimizer if it is
concentrated at a unique inner point.