{"title":"不可压缩流体的变分二元解法","authors":"Amit Acharya, Bianca Stroffolini, Arghir Zarnescu","doi":"arxiv-2409.04911","DOIUrl":null,"url":null,"abstract":"We consider a construction proposed in \\cite{acharyaQAM} that builds on the\nnotion of weak solutions for incompressible fluids to provide a scheme that\ngenerates variationally a certain type of dual solutions. If these dual\nsolutions are regular enough one can use them to recover standard solutions.\nThe scheme provides a generalisation of a construction of Y. Brenier for the\nEuler equations. We rigorously analyze the scheme, extending the work of\nY.Brenier for Euler, and also provide an extension of it to the case of the\nNavier-Stokes equations. Furthermore we obtain the inviscid limit of\nNavier-Stokes to Euler as a $\\Gamma$-limit.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational Dual Solutions for Incompressible Fluids\",\"authors\":\"Amit Acharya, Bianca Stroffolini, Arghir Zarnescu\",\"doi\":\"arxiv-2409.04911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a construction proposed in \\\\cite{acharyaQAM} that builds on the\\nnotion of weak solutions for incompressible fluids to provide a scheme that\\ngenerates variationally a certain type of dual solutions. If these dual\\nsolutions are regular enough one can use them to recover standard solutions.\\nThe scheme provides a generalisation of a construction of Y. Brenier for the\\nEuler equations. We rigorously analyze the scheme, extending the work of\\nY.Brenier for Euler, and also provide an extension of it to the case of the\\nNavier-Stokes equations. Furthermore we obtain the inviscid limit of\\nNavier-Stokes to Euler as a $\\\\Gamma$-limit.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑了 \cite{acharyaQAM}中提出的一种构造,它以不可压缩流体的弱解运动为基础,提供了一种以变化方式生成某类对偶解的方案。如果这些对偶解足够正则,我们就可以用它们来恢复标准解。该方案提供了布雷尼尔(Y. Brenier)对欧拉方程构造的概括。我们对该方案进行了严格分析,扩展了 Y. Brenier 针对欧拉方程的工作,并将其扩展到纳维尔-斯托克斯方程的情况。此外,我们还以 $\Gamma$ 极限的形式得到了纳维尔-斯托克斯到欧拉的粘性极限。
Variational Dual Solutions for Incompressible Fluids
We consider a construction proposed in \cite{acharyaQAM} that builds on the
notion of weak solutions for incompressible fluids to provide a scheme that
generates variationally a certain type of dual solutions. If these dual
solutions are regular enough one can use them to recover standard solutions.
The scheme provides a generalisation of a construction of Y. Brenier for the
Euler equations. We rigorously analyze the scheme, extending the work of
Y.Brenier for Euler, and also provide an extension of it to the case of the
Navier-Stokes equations. Furthermore we obtain the inviscid limit of
Navier-Stokes to Euler as a $\Gamma$-limit.