迪里夏特边界条件下一维种群动力学中的粘附和体积填充

Hyung Jun Choi, Seonghak Kim, Youngwoo Koh
{"title":"迪里夏特边界条件下一维种群动力学中的粘附和体积填充","authors":"Hyung Jun Choi, Seonghak Kim, Youngwoo Koh","doi":"arxiv-2409.04689","DOIUrl":null,"url":null,"abstract":"We generalize the one-dimensional population model of Anguige \\& Schmeiser\n[1] reflecting the cell-to-cell adhesion and volume filling and classify the\nresulting equation into the six types. Among these types, we fix one that\nyields a class of advection-diffusion equations of forward-backward-forward\ntype and prove the existence of infinitely many global-in-time weak solutions\nto the initial-Dirichlet boundary value problem when the maximum value of an\ninitial population density exceeds a certain threshold. Such solutions are\nextracted from the method of convex integration by M\\\"uller \\& \\v Sver\\'ak\n[12]; they exhibit fine-scale density mixtures over a finite time interval,\nthen become smooth and identical, and decay exponentially and uniformly to zero\nas time approaches infinity.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adhesion and volume filling in one-dimensional population dynamics under Dirichlet boundary condition\",\"authors\":\"Hyung Jun Choi, Seonghak Kim, Youngwoo Koh\",\"doi\":\"arxiv-2409.04689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the one-dimensional population model of Anguige \\\\& Schmeiser\\n[1] reflecting the cell-to-cell adhesion and volume filling and classify the\\nresulting equation into the six types. Among these types, we fix one that\\nyields a class of advection-diffusion equations of forward-backward-forward\\ntype and prove the existence of infinitely many global-in-time weak solutions\\nto the initial-Dirichlet boundary value problem when the maximum value of an\\ninitial population density exceeds a certain threshold. Such solutions are\\nextracted from the method of convex integration by M\\\\\\\"uller \\\\& \\\\v Sver\\\\'ak\\n[12]; they exhibit fine-scale density mixtures over a finite time interval,\\nthen become smooth and identical, and decay exponentially and uniformly to zero\\nas time approaches infinity.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们概括了 Anguige\& Schmeiser[1] 反映细胞间粘附和体积填充的一维种群模型,并将其方程分为六种类型。在这六种类型中,我们将其中一种固定为一类前向-后向-前向型的平流-扩散方程,并证明了当初始种群密度的最大值超过某一临界值时,存在无限多的全局-时间弱解的初始-Dirichlet边界值问题。这些解是从 M\"uller \&\v Sver\'ak 的凸积分法中提取出来的[12];它们在有限的时间间隔内表现出细尺度的密度混合物,然后变得平滑和相同,并随着时间接近无穷大而指数式地均匀衰减为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adhesion and volume filling in one-dimensional population dynamics under Dirichlet boundary condition
We generalize the one-dimensional population model of Anguige \& Schmeiser [1] reflecting the cell-to-cell adhesion and volume filling and classify the resulting equation into the six types. Among these types, we fix one that yields a class of advection-diffusion equations of forward-backward-forward type and prove the existence of infinitely many global-in-time weak solutions to the initial-Dirichlet boundary value problem when the maximum value of an initial population density exceeds a certain threshold. Such solutions are extracted from the method of convex integration by M\"uller \& \v Sver\'ak [12]; they exhibit fine-scale density mixtures over a finite time interval, then become smooth and identical, and decay exponentially and uniformly to zero as time approaches infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信