本征弱扩散体系中的空间非均质弗拉索夫-诺德斯特伦-福克-普朗克系统

Shengchuang Chang, Shuangqian Liu, Tong Yang
{"title":"本征弱扩散体系中的空间非均质弗拉索夫-诺德斯特伦-福克-普朗克系统","authors":"Shengchuang Chang, Shuangqian Liu, Tong Yang","doi":"arxiv-2409.04966","DOIUrl":null,"url":null,"abstract":"The spatially homogeneous Vlasov-Nordstr\\\"{o}m-Fokker-Planck system is known\nto exhibit nontrivial large time behavior, naturally leading to weak diffusion\nof the Fokker-Planck operator. This weak diffusion, combined with the\nsingularity of relativistic velocity, present a significant challenge in\nanalysis for the spatially inhomogeneous counterpart. In this paper, we demonstrate that the Cauchy problem for the spatially\ninhomogeneous Vlasov-Nordstr\\\"{o}m-Fokker-Planck system, without friction,\nmaintains dynamically stable relative to the corresponding spatially\nhomogeneous system. Our results are twofold: (1) we establish the existence of\na unique global classical solution and characterize the asymptotic behavior of\nthe spatially inhomogeneous system using a refined weighted energy method; (2)\nwe directly verify the dynamic stability of the spatially inhomogeneous system\nin the framework of self-similar solutions.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The spatially inhomogeneous Vlasov-Nordström-Fokker-Planck system in the intrinsic weak diffusion regime\",\"authors\":\"Shengchuang Chang, Shuangqian Liu, Tong Yang\",\"doi\":\"arxiv-2409.04966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spatially homogeneous Vlasov-Nordstr\\\\\\\"{o}m-Fokker-Planck system is known\\nto exhibit nontrivial large time behavior, naturally leading to weak diffusion\\nof the Fokker-Planck operator. This weak diffusion, combined with the\\nsingularity of relativistic velocity, present a significant challenge in\\nanalysis for the spatially inhomogeneous counterpart. In this paper, we demonstrate that the Cauchy problem for the spatially\\ninhomogeneous Vlasov-Nordstr\\\\\\\"{o}m-Fokker-Planck system, without friction,\\nmaintains dynamically stable relative to the corresponding spatially\\nhomogeneous system. Our results are twofold: (1) we establish the existence of\\na unique global classical solution and characterize the asymptotic behavior of\\nthe spatially inhomogeneous system using a refined weighted energy method; (2)\\nwe directly verify the dynamic stability of the spatially inhomogeneous system\\nin the framework of self-similar solutions.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,空间均匀的弗拉索夫-诺德斯特朗-福克-普朗克系统表现出非对称的大时间行为,自然会导致福克-普朗克算子的弱扩散。这种弱扩散与相对论速度的奇异性相结合,给空间不均匀对应系统的分析带来了巨大挑战。在本文中,我们证明了空间不均匀 Vlasov-Nordstr\"{o}m-Fokker-Planck 系统的 Cauchy 问题在没有摩擦的情况下,相对于相应的空间均匀系统保持动态稳定。我们的结果有两个方面:(1)我们建立了唯一的全局经典解的存在性,并用精炼的加权能量法描述了空间不均匀系统的渐近行为;(2)我们在自相似解的框架内直接验证了空间不均匀系统的动态稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The spatially inhomogeneous Vlasov-Nordström-Fokker-Planck system in the intrinsic weak diffusion regime
The spatially homogeneous Vlasov-Nordstr\"{o}m-Fokker-Planck system is known to exhibit nontrivial large time behavior, naturally leading to weak diffusion of the Fokker-Planck operator. This weak diffusion, combined with the singularity of relativistic velocity, present a significant challenge in analysis for the spatially inhomogeneous counterpart. In this paper, we demonstrate that the Cauchy problem for the spatially inhomogeneous Vlasov-Nordstr\"{o}m-Fokker-Planck system, without friction, maintains dynamically stable relative to the corresponding spatially homogeneous system. Our results are twofold: (1) we establish the existence of a unique global classical solution and characterize the asymptotic behavior of the spatially inhomogeneous system using a refined weighted energy method; (2) we directly verify the dynamic stability of the spatially inhomogeneous system in the framework of self-similar solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信