{"title":"具有通量限制的斥力-消耗系统中的有界性和有限时间膨胀","authors":"Ziyue Zeng, Yuxiang Li","doi":"arxiv-2409.05115","DOIUrl":null,"url":null,"abstract":"We investigate the following repulsion-consumption system with flux\nlimitation \\begin{align}\\tag{$\\star$} \\left\\{ \\begin{array}{ll} u_t=\\Delta u+\\nabla \\cdot(uf(|\\nabla v|^2) \\nabla v), & x \\in \\Omega, t>0, \\tau v_t=\\Delta v-u v, & x \\in \\Omega, t>0, \\end{array} \\right. \\end{align} under no-flux/Dirichlet boundary conditions, where\n$\\Omega \\subset \\mathbb{R}^n$ is a bounded domain and $f(\\xi)$ generalizes the\nprototype given by $f(\\xi)=(1+\\xi)^{-\\alpha}$ ($\\xi \\geqslant 0$). We are\nmainly concerned with the global existence and finite time blow-up of system\n($\\star$). The main results assert that, for $\\alpha > \\frac{n-2}{2n}$, then\nwhen $\\tau=1$ and under radial settings, or when $\\tau=0$ without radial\nassumptions, for arbitrary initial data, the problem ($\\star$) possesses global\nbounded classical solutions; for $\\alpha<0$, $\\tau=0$, $n=2$ and under radial\nsettings, for any initial data, whenever the boundary signal level large\nenough, the solutions of the corresponding problem blow up in finite time. Our results can be compared respectively with the blow-up phenomenon obtained\nby Ahn \\& Winkler (2023) for the system with nonlinear diffusion and linear\nchemotactic sensitivity, and by Wang \\& Winkler (2023) for the system with\nnonlinear diffusion and singular sensitivity .","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness and finite-time blow-up in a repulsion-consumption system with flux limitation\",\"authors\":\"Ziyue Zeng, Yuxiang Li\",\"doi\":\"arxiv-2409.05115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the following repulsion-consumption system with flux\\nlimitation \\\\begin{align}\\\\tag{$\\\\star$} \\\\left\\\\{ \\\\begin{array}{ll} u_t=\\\\Delta u+\\\\nabla \\\\cdot(uf(|\\\\nabla v|^2) \\\\nabla v), & x \\\\in \\\\Omega, t>0, \\\\tau v_t=\\\\Delta v-u v, & x \\\\in \\\\Omega, t>0, \\\\end{array} \\\\right. \\\\end{align} under no-flux/Dirichlet boundary conditions, where\\n$\\\\Omega \\\\subset \\\\mathbb{R}^n$ is a bounded domain and $f(\\\\xi)$ generalizes the\\nprototype given by $f(\\\\xi)=(1+\\\\xi)^{-\\\\alpha}$ ($\\\\xi \\\\geqslant 0$). We are\\nmainly concerned with the global existence and finite time blow-up of system\\n($\\\\star$). The main results assert that, for $\\\\alpha > \\\\frac{n-2}{2n}$, then\\nwhen $\\\\tau=1$ and under radial settings, or when $\\\\tau=0$ without radial\\nassumptions, for arbitrary initial data, the problem ($\\\\star$) possesses global\\nbounded classical solutions; for $\\\\alpha<0$, $\\\\tau=0$, $n=2$ and under radial\\nsettings, for any initial data, whenever the boundary signal level large\\nenough, the solutions of the corresponding problem blow up in finite time. Our results can be compared respectively with the blow-up phenomenon obtained\\nby Ahn \\\\& Winkler (2023) for the system with nonlinear diffusion and linear\\nchemotactic sensitivity, and by Wang \\\\& Winkler (2023) for the system with\\nnonlinear diffusion and singular sensitivity .\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了以下具有通量限制的斥力-消耗系统\left\{ \begin{array}{ll} u_t=\Delta u+\nabla \cdot(uf(|\nabla v|^2) \nabla v), & x \in \Omega, t>0, \tau v_t=\Delta v-u v, & x \in \Omega, t>0, \end{array}.\right.\end{align} under no-flux/Dirichlet boundary conditions, where$\Omega \subset \mathbb{R}^n$ is a bounded domain and $f(\xi)$ generalizes theprototype given by $f(\xi)=(1+\xi)^{-\alpha}$ ($\xi \geqslant 0$).我们主要关注系统($\star$)的全局存在性和有限时间膨胀。主要结果断言,对于任意初始数据,当 $\alpha > \frac{n-2}{2n}$时,当 $\tau=1$ 并且在径向设置下,或者当 $\tau=0$ 没有径向假设时,问题($\star$)具有全局有界经典解;当 $\alpha<0$, $\tau=0$, $n=2$ 时,在径向设置下,对于任意初始数据,只要边界信号电平足够大,相应问题的解就会在有限时间内炸毁。我们的结果可以分别与 Ahn \& Winkler (2023) 针对非线性扩散和线性运动敏感性系统以及 Wang \& Winkler (2023) 针对非线性扩散和奇异敏感性系统得到的炸裂现象进行比较。
Boundedness and finite-time blow-up in a repulsion-consumption system with flux limitation
We investigate the following repulsion-consumption system with flux
limitation \begin{align}\tag{$\star$} \left\{ \begin{array}{ll} u_t=\Delta u+\nabla \cdot(uf(|\nabla v|^2) \nabla v), & x \in \Omega, t>0, \tau v_t=\Delta v-u v, & x \in \Omega, t>0, \end{array} \right. \end{align} under no-flux/Dirichlet boundary conditions, where
$\Omega \subset \mathbb{R}^n$ is a bounded domain and $f(\xi)$ generalizes the
prototype given by $f(\xi)=(1+\xi)^{-\alpha}$ ($\xi \geqslant 0$). We are
mainly concerned with the global existence and finite time blow-up of system
($\star$). The main results assert that, for $\alpha > \frac{n-2}{2n}$, then
when $\tau=1$ and under radial settings, or when $\tau=0$ without radial
assumptions, for arbitrary initial data, the problem ($\star$) possesses global
bounded classical solutions; for $\alpha<0$, $\tau=0$, $n=2$ and under radial
settings, for any initial data, whenever the boundary signal level large
enough, the solutions of the corresponding problem blow up in finite time. Our results can be compared respectively with the blow-up phenomenon obtained
by Ahn \& Winkler (2023) for the system with nonlinear diffusion and linear
chemotactic sensitivity, and by Wang \& Winkler (2023) for the system with
nonlinear diffusion and singular sensitivity .