内哈里流形方法在$C^1(X\setminus \{0\})$中函数的一些应用

Edir Junior Ferreira Leite, Humberto Ramos Quoirin, Kaye Silva
{"title":"内哈里流形方法在$C^1(X\\setminus \\{0\\})$中函数的一些应用","authors":"Edir Junior Ferreira Leite, Humberto Ramos Quoirin, Kaye Silva","doi":"arxiv-2409.05138","DOIUrl":null,"url":null,"abstract":"Given a real Banach space $X$, we show that the Nehari manifold method can be\napplied to functionals which are $C^1$ in $X \\setminus \\{0\\}$. In particular we\ndeal with functionals that can be unbounded near $0$, and prove the existence\nof a ground state and infinitely many critical points for such functionals.\nThese results are then applied to three classes of problems: the {\\it\nprescribed energy problem} for a family of functionals depending on a\nparameter, problems involving the {\\it affine} $p$-Laplacian operator, and\ndegenerate Kirchhoff type problems.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some applications of the Nehari manifold method to functionals in $C^1(X \\\\setminus \\\\{0\\\\})$\",\"authors\":\"Edir Junior Ferreira Leite, Humberto Ramos Quoirin, Kaye Silva\",\"doi\":\"arxiv-2409.05138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a real Banach space $X$, we show that the Nehari manifold method can be\\napplied to functionals which are $C^1$ in $X \\\\setminus \\\\{0\\\\}$. In particular we\\ndeal with functionals that can be unbounded near $0$, and prove the existence\\nof a ground state and infinitely many critical points for such functionals.\\nThese results are then applied to three classes of problems: the {\\\\it\\nprescribed energy problem} for a family of functionals depending on a\\nparameter, problems involving the {\\\\it affine} $p$-Laplacian operator, and\\ndegenerate Kirchhoff type problems.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个实巴纳赫空间 $X$,我们证明内哈里流形方法可以应用于在 $X \setminus \{0\}$ 中为 $C^1$ 的函数。这些结果随后被应用于三类问题:取决于参数的函数族的{it规定能量问题}、涉及{it仿射}$p$-拉普拉斯算子的问题,以及基尔霍夫类型的退化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some applications of the Nehari manifold method to functionals in $C^1(X \setminus \{0\})$
Given a real Banach space $X$, we show that the Nehari manifold method can be applied to functionals which are $C^1$ in $X \setminus \{0\}$. In particular we deal with functionals that can be unbounded near $0$, and prove the existence of a ground state and infinitely many critical points for such functionals. These results are then applied to three classes of problems: the {\it prescribed energy problem} for a family of functionals depending on a parameter, problems involving the {\it affine} $p$-Laplacian operator, and degenerate Kirchhoff type problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信