构建三维能量临界波方程的多孑L解

Istvan Kadar
{"title":"构建三维能量临界波方程的多孑L解","authors":"Istvan Kadar","doi":"arxiv-2409.05267","DOIUrl":null,"url":null,"abstract":"We study the energy-critical wave equation in three dimensions, focusing on\nits ground state soliton, denoted by $W$. Using the Poincar\\'e symmetry\ninherent in the equation, boosting $W$ along any timelike geodesic yields\nanother solution. The slow decay behavior of $W$, $W\\sim r^{-1}$, indicates a\nstrong interaction among potential multi-soliton solutions. In this paper, for arbitrary $N\\geq0$, we provide an algorithmic procedure to\nconstruct approximate solutions to the energy critical wave equation that: (1)\nconverge to a superposition of solitons, (2) have no outgoing radiation, (3)\ntheir error to solve the equation decays like $(t-r)^{-N}$. Then, we show that\nthis approximate solution can be corrected to a real solution.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"137 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of multi-soliton solutions for the energy critical wave equation in dimension 3\",\"authors\":\"Istvan Kadar\",\"doi\":\"arxiv-2409.05267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the energy-critical wave equation in three dimensions, focusing on\\nits ground state soliton, denoted by $W$. Using the Poincar\\\\'e symmetry\\ninherent in the equation, boosting $W$ along any timelike geodesic yields\\nanother solution. The slow decay behavior of $W$, $W\\\\sim r^{-1}$, indicates a\\nstrong interaction among potential multi-soliton solutions. In this paper, for arbitrary $N\\\\geq0$, we provide an algorithmic procedure to\\nconstruct approximate solutions to the energy critical wave equation that: (1)\\nconverge to a superposition of solitons, (2) have no outgoing radiation, (3)\\ntheir error to solve the equation decays like $(t-r)^{-N}$. Then, we show that\\nthis approximate solution can be corrected to a real solution.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了三维空间的能量临界波方程,重点是其基态孤子,用 $W$ 表示。利用该方程固有的Poincar\'e 对称性,沿任意时间似大地线提升$W$可得到另一个解。$W$ 的缓慢衰减行为($W\sim r^{-1}$)表明潜在的多孑子解之间存在强烈的相互作用。在本文中,对于任意的 $N\geq0$,我们提供了一种算法程序来构建能量临界波方程的近似解,这些近似解包括(1)收敛于孤立子的叠加;(2)没有外向辐射;(3)它们求解方程的误差像 $(t-r)^{-N}$ 一样衰减。然后,我们证明这种近似解可以修正为实解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of multi-soliton solutions for the energy critical wave equation in dimension 3
We study the energy-critical wave equation in three dimensions, focusing on its ground state soliton, denoted by $W$. Using the Poincar\'e symmetry inherent in the equation, boosting $W$ along any timelike geodesic yields another solution. The slow decay behavior of $W$, $W\sim r^{-1}$, indicates a strong interaction among potential multi-soliton solutions. In this paper, for arbitrary $N\geq0$, we provide an algorithmic procedure to construct approximate solutions to the energy critical wave equation that: (1) converge to a superposition of solitons, (2) have no outgoing radiation, (3) their error to solve the equation decays like $(t-r)^{-N}$. Then, we show that this approximate solution can be corrected to a real solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信