{"title":"关于迪里夏特分数拉普拉奇及其在有界域 SQG 方程中的应用","authors":"Elie Abdo, Quyuan Lin","doi":"arxiv-2409.05209","DOIUrl":null,"url":null,"abstract":"We investigate new properties of the fractional Dirichlet Laplacian on smooth\nbounded domains and establish fractional product estimates and nonlinear\nPoincar\\'e inequalities. We also use these tools to study the long-time\ndynamics of the surface quasi-geostrophic equation forced by some given\ntime-independent body forces in the presence of physical boundaries and prove\nthe existence of a finite-dimensional global attractor.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Dirichlet Fractional Laplacian and Applications to the SQG Equation on Bounded Domains\",\"authors\":\"Elie Abdo, Quyuan Lin\",\"doi\":\"arxiv-2409.05209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate new properties of the fractional Dirichlet Laplacian on smooth\\nbounded domains and establish fractional product estimates and nonlinear\\nPoincar\\\\'e inequalities. We also use these tools to study the long-time\\ndynamics of the surface quasi-geostrophic equation forced by some given\\ntime-independent body forces in the presence of physical boundaries and prove\\nthe existence of a finite-dimensional global attractor.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Dirichlet Fractional Laplacian and Applications to the SQG Equation on Bounded Domains
We investigate new properties of the fractional Dirichlet Laplacian on smooth
bounded domains and establish fractional product estimates and nonlinear
Poincar\'e inequalities. We also use these tools to study the long-time
dynamics of the surface quasi-geostrophic equation forced by some given
time-independent body forces in the presence of physical boundaries and prove
the existence of a finite-dimensional global attractor.