具有不完美结合界面的传导性问题的梯度估计

Hongjie Dong, Zhuolun Yang, Hanye Zhu
{"title":"具有不完美结合界面的传导性问题的梯度估计","authors":"Hongjie Dong, Zhuolun Yang, Hanye Zhu","doi":"arxiv-2409.05652","DOIUrl":null,"url":null,"abstract":"We study the field concentration phenomenon between two closely spaced\nperfect conductors with imperfect bonding interfaces of low conductivity type.\nThe boundary condition on these interfaces is given by a Robin-type boundary\ncondition. A previous conjecture suggested that the gradient of solutions\nremains bounded regardless of $\\varepsilon$, the distance between two\ninclusions. In this article, we establish gradient estimates, indicating that\nthe conjecture is true only when the bonding parameter $\\gamma$ is sufficiently\nsmall, and the gradient could blow up when $\\gamma$ is large and the boundary\ndata is not aligned with shortest line connecting the two inclusions. Moreover,\nwe derive the optimal blow-up rates under certain symmetry assumptions.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient estimates for the conductivity problem with imperfect bonding interfaces\",\"authors\":\"Hongjie Dong, Zhuolun Yang, Hanye Zhu\",\"doi\":\"arxiv-2409.05652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the field concentration phenomenon between two closely spaced\\nperfect conductors with imperfect bonding interfaces of low conductivity type.\\nThe boundary condition on these interfaces is given by a Robin-type boundary\\ncondition. A previous conjecture suggested that the gradient of solutions\\nremains bounded regardless of $\\\\varepsilon$, the distance between two\\ninclusions. In this article, we establish gradient estimates, indicating that\\nthe conjecture is true only when the bonding parameter $\\\\gamma$ is sufficiently\\nsmall, and the gradient could blow up when $\\\\gamma$ is large and the boundary\\ndata is not aligned with shortest line connecting the two inclusions. Moreover,\\nwe derive the optimal blow-up rates under certain symmetry assumptions.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了两个间距很近的不完全导体之间的场集中现象,这些不完全导体具有低导电率类型的不完全结合界面。之前的一个猜想认为,无论两个夹杂物之间的距离是多少,解的梯度都是有界的。在本文中,我们建立了梯度估计,指出只有当结合参数 $\gamma$ 足够小时,该猜想才成立;而当 $\gamma$ 较大且边界数据与连接两个内含物的最短线不一致时,梯度可能会爆炸。此外,我们还推导出了某些对称性假设下的最优炸裂率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient estimates for the conductivity problem with imperfect bonding interfaces
We study the field concentration phenomenon between two closely spaced perfect conductors with imperfect bonding interfaces of low conductivity type. The boundary condition on these interfaces is given by a Robin-type boundary condition. A previous conjecture suggested that the gradient of solutions remains bounded regardless of $\varepsilon$, the distance between two inclusions. In this article, we establish gradient estimates, indicating that the conjecture is true only when the bonding parameter $\gamma$ is sufficiently small, and the gradient could blow up when $\gamma$ is large and the boundary data is not aligned with shortest line connecting the two inclusions. Moreover, we derive the optimal blow-up rates under certain symmetry assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信